Как работает реактивный двигатель? кратко

Содержание:

Реактивные двигатели в космосе


После освоения неба человечество поставило перед собой задачу покорить космос.

Как вы уже поняли, наиболее мощным двигателем, способным поднять ракету на высоту во много тысяч километров, являлся именно реактивный двигатель.

Конечно, возникает вопрос: как может работать реактивный двигатель в космосе, в безвоздушном пространстве?

В устройстве ракеты предусмотрен резервуар с кислородом, который смешивается с ракетным топливом и образует необходимую тягу полета ракеты, когда космический корабль покидает атмосферу Земли.

Затем приходит в действие закон сохранения импульса: масса ракеты постепенно уменьшается, сгоревшая смесь топлива и кислорода выбрасывается через сопло в одну сторону, а тело ракеты движется в противоположную.

Атомные авиа двигатели

Первые атомные авиа двигатели начали появляться в середине минувшего века, когда начались мирные исследования атома. Основным принципом работы атомного авиационного двигателя является осуществление контролируемой цепной ядерной реакции, что позволяло выдавать огромную мощность, при сравнительно небольшом уровне затрат.

Атомные авиа двигатели практически одновременно появились и в США и в СССР, однако сама идея того, что самолёт, пусть и с весьма компактным атомным реактором на своём борту может упасть и это впоследствии приведёт к катастрофе, заставила отказаться от этой идеи.

В США атомный авиационный двигатель применялся на самолёте Convair NB-36H, а в СССР на самолётах Ту-95 и Ан-22.

Реактивные двигатели в космосе

Как вы уже поняли, наиболее мощным двигателем, способным поднять ракету на высоту во много тысяч километров, являлся именно реактивный двигатель.

Конечно, возникает вопрос: как может работать реактивный двигатель в космосе, в безвоздушном пространстве?

В устройстве ракеты предусмотрен резервуар с кислородом, который смешивается с ракетным топливом и образует необходимую тягу полета ракеты, когда космический корабль покидает атмосферу Земли.

Затем приходит в действие закон сохранения импульса: масса ракеты постепенно уменьшается, сгоревшая смесь топлива и кислорода выбрасывается через сопло в одну сторону, а тело ракеты движется в противоположную.

Прямоточные воздушно-реактивные двигатели

ПВРД – самый простой тип реактивного двигателя по своему устройству. В нем вообще нет движущихся частей. Повышенное давление, необходимое для работы, достигается за счет торможения встречного потока воздуха. Любой ПВРД состоит из трех компонентов:

  • диффузора;
  • камеры сгорания;
  • сопла.

В диффузоре уменьшается скорость потока воздуха и повышается его давление, затем в камере сгорания он нагревается за счет окисления топлива, после чего происходит расширение рабочего тела в сопле и возникает реактивная тяга. Существуют три вида ПВРД:

  • дозвуковые;
  • сверхзвуковые;
  • гиперзвуковые.

На сверхзвуковой скорости прямоточный двигатель весьма эффективен, при скорости в 3 Маха степень повышения давления вполне сравнимо с аналогичным показателем ТРД.

Гиперзвуковой прямоточный реактивный двигатель (ГПВРД) предназначен для полетов на скоростях выше 5 Махов. Сегодня созданием подобных силовых установок занимаются во многих странах мира, но они все еще остаются на уровне единичных прототипов.

Гиперзвуковые летательные аппараты будущего, скорее всего, будут оснащаться ПРВД

Прямоточный реактивный двигатель неработоспособен на земле и малоэффективен на низких скоростях полета. Поэтому его нередко используют с различными разгонными устройствами: пороховыми ускорителями или же запуск ЛА с ПРВД производится с самолетов-носителей. Подобные ограничения определяют область возможного применения летательных аппаратов с ПВРД: обычно это боевые системы одноразового использования. Примером могут служить крылатые ракеты «Оникс» и «Брамос».

Турбонаддув – назначение, устройство и принцип работы

Турбонаддув – это такой способ агрегатного наддува, при котором подача воздуха в цилиндры двигателя происходит под давлением, нагнетаемым действием энергии отработавших газов. Сегодня такой метод – самый эффективный, призванный увеличивать мощность двигателя, не повышая объёма его цилиндров и частоты вращения коленчатого вала. Кроме этого, использование турбонаддува даёт экономию топлива в соотношении расхода к мощности и уменьшает токсичность отработавших газов, осуществляя более полное сгорание топлива.

Применение система турбонаддува находит на обоих типах двигателей – и на бензиновых, и на дизельных. Однако на последних она гораздо эффективнее за счёт их более высокой степени сжатия и сравнительно небольшой частоты вращения коленчатого вала.

Использование же турбонаддува для бензиновых двигателей ограничено, во-первых, вероятностью наступления детонации, обусловленной значительным увеличением оборотов двигателя, а во-вторых, перегревом турбонагнетателя из-за повышенной температуры отработавших газов – около 1000°С, в то время как у дизелей она составляет порядка 600°С.

Устройство

Основная часть компонентов турбонаддува – это типовые элементы впускной системы. Присутствие же в системе турбокомпрессора, интеркулера и конструктивно новых элементов управления становится отличительной особенностью именно турбонаддува.

Хотя конструкции отдельных систем турбонаддува и различаются, можно обозначить их общие компоненты. Помимо вышеперечисленных турбокомпрессора, интеркулера и элементов управления это воздухозаборник с воздушным фильтром, дроссельная заслонка, впускной коллектор, напорные шланги и соединительные патрубки, а в некоторых системах ещё и впускные заслонки.

Турбокомпрессор или турбонагнетатель — главный конструктивный компонент системы турбонаддува. Он нагнетает воздух во впускную систему.

Его устройство выглядит следующим образом:

Устройство турбонагнетателя: 1 — корпус компрессора; 2 — вал ротора; 3 — корпус турбины; 4 — турбинное колесо; 5 — уплотнительные кольца; 6 — подшипники скольжения; 7 — корпус подшипников; 8 — компрессорное колесо.

Турбинное колесо, находясь в специальном теплоустойчивом корпусе, превращает энергию потока отработавших газов в энергию вращения и перенаправляет её на компрессорное колесо. С его помощью воздух всасывается, сжимается и подаётся в цилиндры двигателя. Оба эти колеса жёстко закреплены на роторном валу, вращающемся на подшипниках скольжения плавающего вида. Интеркулер является радиатором жидкостного или воздушного типа. Он охлаждает сжатый воздух, увеличивая его плотность и давление.

Главный элемент управления системой турбонаддува – это регулятор давления наддува, он, по сути, является перепускным клапаном (wastegate). Его задача – ограничивать энергию отработавших газов и направлять часть их потока в обход турбинного колеса. Таким образом, достигается оптимальная величина давления наддува. Привод перепускного клапана – электрический или пневматический. Для его срабатывания система управления двигателем подаёт сигнал от датчика давления наддува.

Как работает турбонаддув

Принцип работы турбонаддува берёт за основу использование энергии отработавших газов. Их струя заставляет вращаться турбинное колесо, передающее вращение через роторный вал компрессорному колесу. С помощью последнего происходит сжатие воздуха и его нагнетание в систему.

Принцип работы турбонаддува

Интеркулер охлаждает воздух, нагретый при сжатии, после чего тот подаётся в цилиндры двигателя.

Хотя система турбонаддува и не связана жёстко с коленчатым валом, её эффективность напрямую зависит от частоты оборотов двигателя. Увеличение оборотов коленчатого вала ведёт к повышению энергии отработавших газов и, соответственно, частоты вращения турбины, что влечёт за собой более интенсивное поступление воздуха в цилиндры двигателя.

Как работает реактивный двигатель

Рисунок 3 – Схема работы реактивного двигателя

Воздух из окружающего пространства поступает на всас вентиляторов, которые подают его далее лопатки вращающегося с очень высокой скоростью турбокомпрессора. При этом поступающий воздух выполняет 2 функции:

  • окислитель для сгорания топлива;
  • охладитель агрегата.

В лопаточном аппарате турбокомпрессора воздух крепко уплотняется и под высоким давлением (от 3 МПа) подается в топливную смесительную камеру реактивного двигателя. Из рисунка 3 видно, что камера сгорания устроена таким образом, что смешение воздуха производится в несколько ступеней — на входе и в самой камере. Сюда же подводится топливо.

Хорошо перемешанная и в достаточном количестве обогащенная смесь воспламеняется, и в результате сгорания образуется тепловая энергия с выделением огромного объема газов. Последние приводят во вращение турбину горячей части двигателя, привод которой служит приводом турбокомпрессора.

В отдельных моделях реактивных двигателей турбины на выходе не монтируются. По большей части данное исполнение применяется в конструкции и принципе работы ракетного двигателя, где продукты сгорания после камеры попадают на выходные сопла.

Покидая горячую ступень, газы во всех реактивных аппаратах проходят через сопла. Эти элементы отличаются по своим конструкциям для разных моделей реактивных агрегатов и представляют собой «трубу», которая сначала сужается, а к выходу газов увеличивается в диаметре. За счет такой конструкции отработавшие газы увеличивают свою скорость до сверхзвука и образуют реактивную силу.

Температура горения в «сердце» реактивного агрегата достигает 2500°С, поэтому конструктивно требовательны в постоянстве охлаждения.

Долгосрочные климатические изменения

Ученые-климатологи выдвинули гипотезу, что в результате глобального потепления струйный поток будет постепенно ослабевать . Такие тенденции, как уменьшение арктического морского льда , уменьшение снежного покрова, эвапотранспирация и другие погодные аномалии, привели к тому, что Арктика нагревается быстрее, чем другие части земного шара ( усиление полярности ). Это, в свою очередь, снижает температурный градиент, который вызывает ветры реактивного потока, что в конечном итоге может привести к тому, что реактивный поток станет более слабым и более изменчивым в своем направлении. Как следствие, ожидается, что экстремальные зимние погодные условия станут более частыми. При более слабом реактивном потоке полярный вихрь с большей вероятностью вытечет из полярной области и принесет чрезвычайно холодную погоду в регионы средних широт.

С 2007 года, и особенно в 2012 году и в начале 2013 года, струйный поток находился на аномально низкой широте по всей Великобритании, находясь ближе к Ла-Маншу , около 50 ° с.ш., а не к его более обычной северной широте Шотландии около 60 ° с.ш. . Однако между 1979 и 2001 годами средняя позиция струйного потока перемещалась на север со скоростью 2,01 километра (1,25 мили) в год через Северное полушарие . По всей Северной Америке такие изменения могут привести к более засушливым условиям на южном ярусе Соединенных Штатов и к более частым и более интенсивным тропическим циклонам в тропиках. Подобный медленный дрейф к полюсу был обнаружен при изучении струйного течения Южного полушария за тот же период времени.

Устройство и принцип работы агрегата

По своей конструкции движок не очень сложный, он представлен камерой сгорания, где оборудованы форсунки и свечи зажигания, которые необходимы для подачи горючего и добычи искрового заряда. Компрессор оснащен на валу вместе с колесом, обладающим особыми лопатками.

Помимо этого мотор состоит из таких составляющих как — редуктор, канал впуска, теплообменник, игла, диффузор и выпускной трубопровод.

Во время вращения компрессорного вала, воздушный поток, поступающий через канал впуска, захватывается его лопастями. После увеличения скорости компрессора до пятисот м в секунду, он нагнетается в диффузор. Скорость у воздуха на выходе диффузора снижается, но давление увеличивается. Затем воздушный поток оказывается в теплообменнике, где происходит его нагрев за счет отработанных газов, а после этого воздух подается в камеру сгорания.

Вместе с ним туда попадает горючее, которое распыляется через форсунок. После того как топливо перемешивается с воздухом, создается топливно-воздушная смесь, которая загорается благодаря искре получаемой от свечи зажигания. Давление в камере при этом начинает увеличиваться, а турбинное колесо приводится в действие за счет газов попадающих на лопатки колеса.

В итоге осуществляется передача крутящего момента колеса на трансмиссию авто, а отходящие газы выбрасываются в атмосферу.

Принцип работы ядерного двигателя

Название ракеты Vasimr связана с аббревиатурой, которую можно перевести как «Электромагнитный ускоритель с изменяемым удельным импульсом». Если говорить коротко, используемый в нем двигатель использует ядерные реакторы для нагрева плазмы (получается из газа под воздействием радиоволновых антенн) до двух миллионов градусов. После этого реактивная струя выходит из задней части двигателя, приводя ракету в движение со скоростью до 197 950 километров в час (54 километра в секунду). Подробнее о том, как работают ядерные двигатели, я уже рассказывал в этом материале.

Визуализация работы ракетного двигателя Ad Astra

Атомный двигатель

В период холодной войны в мире были попытки создания атомного двигателя, за основу был взят турбореактивный двигатель. Главной задумкой ученых было создание двигателя, основанного не на химической реакции радиоактивных веществ, а на вырабатываемом тепле от ядерного реактора. Он должен был находиться на месте камеры сгорания.

В теории воздух должен был проходить через работающую зону реактора, благодаря этому реактор должен был остужаться, а температура воздуха наоборот возрастать. После чело воздух должен был расширяться и выходить через сопла (выхлоп) на этот момент скорость воздуха должна была превышать скорость полета самолета.

В Советском союзе были попытки проведения испытаний подобного двигателя, также ученные в соединенных штатах Америки, вели разработку данного двигателя, и их работа почти подходила к тестам двигателя на настоящем самолете.

Но по ряду причин разработки этого двигателя было решено закрыть. Так как у двигателя было множество недостатков, а именно:

  • Пилоты были подвержены постоянному радиоактивному облучению на протяжении всего полета.
  • Вместе с воздухом через сопла выходили и частички радиоактивного элемента в атмосферу.
  • В том случае если самолет терпел крушение, был очень большой шанс взрыва радиоактивного реактора, что влекло за собой радиоактивное отравление на довольно большой площади.

Как работает реактивный двигатель

Рабочим телом двигателя является реактивная . Она с очень большой скоростью истекает из сопла. При этом образуется реактивная сила, которая толкает все устройство в противоположном направлении. Тяговое усилие создается исключительно за счет действия струи, без какой-либо опоры на другие тела. Эта особенность работы реактивного двигателя позволяет использовать его в качестве силовой установки для ракет, самолетов и космических аппаратов.

Отчасти работа реактивного двигателя сравнима с действием струи воды, вытекающей из шланга. Под огромным давлением жидкость подается по рукаву к зауженному концу шланга. Скорость воды при выходе из брандспойта выше, чем внутри шланга. При этом образуется сила обратного давления, которая позволяет пожарному удерживать шланг лишь с большим трудом.

Производство реактивных двигателей представляет собой особую отрасль техники. Поскольку температура рабочего тела здесь достигает нескольких тысяч градусов, детали двигателя изготовляют из высокопрочных металлов и тех материалов, которые устойчивы к плавлению. Отдельные части реактивных двигателей выполняют, к примеру, из специальных керамических составов.

РЕФЕРАТ

ПО ТЕМЕ:

Реактивные
Двигатели

.

Как работает турбореактивный двигатель

Если реактивный двигатель в наше время — дело обычное, то турбореактивный встречается не так часто. Ими оборудуют крупные пассажирские самолёты.

Главное отличие этих двух видов двигателей: для реактивного нужен не только запас горючего, но и окислитель, то есть воздух, который подаётся из топливных баков. Турбореактивный «тащит» на себе и без того нелёгкий груз, поэтому устроен так, что воздух он захватывает с помощью лопастей турбины из атмосферы, поэтому лайнер нужно загрузить только топливом.

Далее принцип работы турбореактивного двигателя ничем не отличается от реактивного.

Прямоточный воздушно-реактивный двигатель

В отличие от других реактивных двигателей в прямоточном воздушно-реактивном двигателе нет турбины и компрессора. Основными частями являются камера сгорания, диффузоры и сопла, с помощью которых создается тяга, как говорилось ранее.Главной задачей диффузора является торможение встречного воздуха и повышение статического электричества. Кислород, поступающий из него, является основным окислителем для сгорания топлива в камере сгорания.Помимо диффузора в таком двигателе также есть стабилизатор пламени и форсунки.Существует также несколько разновидностей такого двигателя (это зависит от требуемой скорости):– дозвуковые– сверхзвуковые– гиперзвуковые

Устройство реактивного двигателя

Реактивный двигатель состоит из следующих основных элементов:

  • компрессор, который засасывает в двигатель поток воздуха;
  • камера внутреннего сгорания, где происходит смешивание топлива с воздухом, их горение;
  • турбина – придает дополнительное ускорение потоку тепловой энергии, полученной в результате горения топлива и воздуха;
  • сопло, важнейший элемент, который преобразует внутреннюю энергию в «движущую силу» – кинетическую энергию.

Благодаря совместному взаимодействию этих элементов, на выходе реактивного двигателя образуется мощнейшая реактивная струя, придающая объектам, на которых установлен двигатель, высочайшую скорость.

Преимущества ядерных ракет

Подробностями о ракете для полетов на Марс поделилось издание Interesting Engineering. Сообщается, что обычные ракеты расходуют весь запас своего топлива за один управляемый взрыв во время запуска. Они не могут временно остановить использование топливо и даже не способны резко изменить траекторию своего полета. Также между космическим кораблем и центром управления непременно будет 10-минутная задержка связи. Получается, что если с экипажем произойдет что-то страшное, нам придется с ужасом наблюдать за их гибелью — с Земли им помочь будет невозможно.

Для полетов на Марс в будущем планируется также использовать Starship от SpaceX

По словам компании Ad Astra, их ракета Vasimr VX-200SS способна устранить все эти сложности. Установленный в нее двигатель сможет выключаться и активироваться во время всего полета. Он будет постепенно ускоряться и достигнет своей пиковой скорости в 54 километра в секунду уже к 21 дню полета. Получается, что он будет в 4 раза быстрее всех существующих сегодня космических ракет. Благодаря этой особенности, она сможет доставить людей на Марс всего за 1 месяц вместо 7-8 месяцев. Члены экипажа подвергнутся меньшему воздействию космической радиации, что очень хорошо — недавно я уже писал, что для целостности астронавтов полеты в космосе должны быть максимально короткими. Двигатель ракеты также позволит в любое время изменить маршрут движения.

Полет на Марс планируется совершить примерно в 2024 году. Верите ли вы, что человечеству удастся это сделать в такие короткие сроки? Пишите в нашем Telegram-чате

Как работает турбореактивный двигатель?

Реактивные двигатели применяются повсеместно, а турбореактивные устанавливаются больших пассажирских лайнерах. Отличие их в том, что первый несет с собой запас топлива и окислителя, а конструкция обеспечивает их подачу из баков.

Одна из самых важных деталей у них — это лопасть турбины. От нее зависит мощность двигателя.

Схема турбореактивного двигателя.

Именно они вырабатывают тяговые усилия, необходимые для ускорения самолета. Каждый из лопастей производит в 10 раз больше энергии, чем самый обычный, автомобильный двигатель. Они устанавливаются позади камеры сгорания, в той части двигателя, где самое высокое давление, а температура доходит до 1400 градусов по Цельсию.

В процессе производства лопастей они проходят через процесс монокристаллизации, что придает им твердости и прочности.

Перед тем, как установить на самолет, каждый двигатель проверяется на полное тяговое усилие. Он должен пройти сертификацию Европейского совета по безопасности и компанией, которая его произвела. Одной из самых крупных фирм по их производству является Роллс-Ройс.

Реактивные двигатели в самолете

Первый реактивный самолет был разработан немцами в 1937 году, а его испытания начались лишь в 1939 году. Однако имеющиеся на то время двигатели потребляли невероятно большое количество топлива и запас хода такого самолета составлял всего лишь 60 км.

В это же время Японии и Великобритании удалось создать собственные самолеты с реактивными двигателями. Но это были лишь опытные экземпляры, так и не поступившие в серийное производство.

Первым серийным реактивным самолетом стал немецкий «Мессершмит», который, однако, не позволил гитлеровской коалиции взять верх в развязанной ими войне.

Мессершмитт Me-262 Швальбе/Штурмфогель

В гражданской же авиации реактивные самолеты появились лишь в 1952 году в Великобритании.

С тех пор и по настоящие дни, реактивные двигатели являются основными двигателями, применяемыми в самолетостроении. Именно благодаря им, современны лайнеры развивают скорость до 800 километров в час.

Явление отдачи

Шло время, наука не стояла на месте. На смену простейшим механическим двигателям пришли паровые, топливные, электрические. Но научные поиски и разработки на этом не прекращались. Как всегда, на помощь пришла природа, которая, в большинстве случаев и наталкивает изобретателей на удивительные открытия.

Наблюдения за морскими жителями, такими как осьминоги, кальмары и каракатицы, привели к неожиданным результатам. Манера движения этих морских обитателей, была схожа с кратковременным толчком. Будто тело отталкивается отчего – то и продвигается вперед.

Эти наблюдения были чем-то схожи с замечаниями Гюегенса про выстрел и пушку, которые мы упоминали выше.

Таким образом, в физики появилось понятие «явление отдачи». В ходе дальнейших научных исследований было выяснено, что именно благодаря явлению отдачи происходит все движение на планете Земля: автомобиль отталкивается от земли, корабль – от воды и т.д.

Движение тел происходит благодаря передаче импульса от одного объекта другому. Для объяснения явления приведем простейший пример: вы решили толкнуть своего товарища в плечо, приложили определенную силу, в результате которой, он сдвинулся с места, но и вы испытали силу, отталкивающую вас в противоположную сторону.

Конечно, расстояние, на которое сдвинетесь вы и ваш друг, будет зависеть от ряда факторов: сколько вы весите, как сильно вы его толкнули.

Реактивный двигатель: мотор, подаривший людям небо

Мы живем в эпоху реактивной авиации – это знакомо любому, даже не слишком сведущему в технических вопросах, человеку. Поршневой мотор с традиционным винтом, хотя и не совсем канул в Лету, но лидирующие позиции он сдал давным-давно. Подавляющее большинство современных самолетов – пассажирских, транспортных и военных – оснащены различными типами реактивных двигателей. Именно благодаря моторам подобно конструкции авиация превратилась в удобный, массовый и быстрый вид транспорта.

Реактивный двигатель (РД) – это двигатель, создающий силу тяги путем преобразования внутренней энергии топлива в кинетическую рабочего тела. Оно истекает из сопла со значительной скоростью, и, согласно закону сохранения импульса, толкает его в противоположную сторону. Это и есть принцип работы реактивного двигателя. Особенностью РД является его сочетание с движителем, усилие тяги он создает только за счет контакта с рабочим телом, без опоры или взаимодействия с иными объектами. Первым прототипом РД можно назвать шар Герона, созданный еще в I веке н. э.

В данном материале мы подробно коснемся конструкции устройств, относящихся к реактивным двигателям. Рассмотрим, как работает реактивный двигатель, представим их классификацию, а также основные особенности применения.

Как работает турбореактивный двигатель

Если реактивный двигатель в наше время — дело обычное, то турбореактивный встречается не так часто. Ими оборудуют крупные пассажирские самолёты.

Главное отличие этих двух видов двигателей: для реактивного нужен не только запас горючего, но и окислитель, то есть воздух, который подаётся из топливных баков. Турбореактивный «тащит» на себе и без того нелёгкий груз, поэтому устроен так, что воздух он захватывает с помощью лопастей турбины из атмосферы, поэтому лайнер нужно загрузить только топливом.

Далее принцип работы турбореактивного двигателя ничем не отличается от реактивного.

Электрические ракетные двигатели (ЭРД)

Еще один потенциальный конкурент химических РД – электрический РД, работающий за счет электрической энергии. ЭРД может быть электротермическим, электростатическим, электромагнитным или импульсным.

История создания

Первый ЭРД был сконструирован в 30-х годах советским конструктором В.П. Глушко, хотя идея создания такого двигателя появилась еще в начале ХХ века. В 60-х годах ученые СССР и США активно работали над созданием ЭРД, и уже в 70-х годах первые образцы начали использоваться в космических аппаратах в качестве двигателей управления.

Устройство и принцип работы

Электроракетная двигательная установка состоит из самого ЭРД, строение которого зависит от его типа, систем подачи рабочего тела, управления и электропитания. Электротермический РД нагревает поток рабочего тела за счет тепла, выделяемого нагревательным элементом, или в электрической дуге. В качестве рабочего тела используется гелий, аммиак, гидразин, азот и другие инертные газы, реже – водород.

Электростатические РД делятся на коллоидные, ионные и плазменные. В них заряженные частицы рабочего тела ускоряются за счет электрического поля. В коллоидных или ионных РД ионизация газа обеспечивается ионизатором, высокочастотным электрическим полем или газоразрядной камерой. В плазменных РД рабочее тело – инертный газ ксенон – проходит через кольцевой анод и попадает в газоразрядную камеру с катод-компенсатором. При высоком напряжении между анодом и катодом вспыхивает искра, ионизирующая газ, в результате чего получается плазма. Положительно заряженные ионы выходят через сопло с большой скоростью, приобретенной за счет разгона электрическим полем, а электроны выводятся наружу катодом-компенсатором.

Электромагнитные РД имеют свое магнитное поле – внешнее или внутреннее, которое ускоряет заряженные частицы рабочего тела.

Импульсные РД работают за счет испарения твердого топлива под действием электрических разрядов.

Среди преимуществ ЭРД:

  • высокий показатель удельного импульса, верхний предел которого практически не ограничен;
  • малый расход топлива (рабочего тела).

Недостатки:

  • высокий уровень потребления электроэнергии;
  • сложность конструкции;
  • небольшая тяга.

На сегодняшний день использование ЭРД ограничено их установкой на космические спутники, а в качестве источников электроэнергии для них применяются солнечные батареи. Вместе с тем именно эти двигатели могут стать теми силовыми установками, которые дадут возможность исследовать космос, поэтому работы по созданию их новых моделей активно ведутся во многих странах. Именно эти силовые установки чаще всего упоминали фантасты в своих произведениях, посвященных покорению космоса, их же можно встретить и в научно-фантастических фильмах. Пока именно ЭРД является надеждой на то, что люди все же смогут путешествовать к звездам.

Использование двигателя. Преимущества и недостатки

Современные ТРД практически не оснащаются центробежными компрессорами. В сравнение с осевым у центробежного компрессора каждая ступень сжатия более эффективная, но общее КПД при этом ниже. Это объясняется тем, что многоступенчатые центробежные компрессоры имеют очень сложную конструкцию и большие габариты, что увеличивает и их вес, тогда как многоступенчатость осевых компрессоров – не проблема. Именно поэтому они нашли широкое применение не в авиации, а «на земле» в силовых установках, используемых в системах вентиляции, на газотранспортных магистралях и т.д. Из самолетов, на которых использовались реактивные двигатели с центробежными компрессорами, можно отметить HeS 3, которым был оснащен первый реактивный самолет, английский Power Jets W.1, который использовался в первом британском истребителе, Rolls-Royce Nene, ставшим в последствии прототипом советского РД-45. Использование таких двигателей было характерным для «зари» авиастроения, сейчас же практически везде используются двигатели с осевыми компрессорами.

Несмотря на то, что реактивные двигатели устанавливаются на большинстве современных самолетов, все же и они далеко не идеальные. Есть у них и недостатки: высокая себестоимость и повышенный расход топлива. Первый недостаток объясняется тем, что для изготовления отдельных элементов реактивного двигателя нужны сверхпрочные и жаростойкие материалы, которые бы могли работать при очень высоких давлениях и температурах. Что касается расхода топлива, он действительно выше, чем, например, у его ближайшего «родственника» турбовинтового двигателя, ну а от расхода топлива напрямую зависит стоимость перелетов. Поэтому в случаях, когда нет необходимости развивать сверхзвуковые скорости, самолеты оснащаются ТВД, что дает возможность снизить цены на перелет. В основном это пассажирские и грузовые самолеты, которые летают на большие расстояния. А вот в военной авиации практически всегда используются ТРД, ведь здесь не так важна экономия, как скорость.

Принцип действия турбонаддува

Система турбонаддува использует энергию газов, которые образуются при сгорании топлива. Газы обеспечивают вращательные движения колеса турбинного типа, которое в свою очередь запускает компрессорное колесо, отвечающее за сжатие и нагнетание воздушной массы в систему. Далее происходит охлаждение воздуха при помощи интеркулера и подача его в цилиндры.

Очевидно, что хотя турбонаддув механически никак не связан с коленвалом двигателя, однако его работа и ее эффективность находится в прямой зависимости от скорости вращения коленчатого вала. Чем выше обороты двигателя, тем эффективнее работает турбонаддув.

Несмотря на свою практичность и эффективность, система турбонаддува имеет некоторые недостатки. Ключевым из них является появление турбоям – задержка в увеличении мощности ДВС.

Подобное явление проявляется вследствие инерционности системы – задержки в увеличении давления наддува при достаточно резком нажатии на газ, что может привести к разрыву между требуемой мощностью двигателя и производительностью турбины.

Как работает турбонаддув в машине

Энергия отработанных выхлопных газов в двигателе направляется на турбинное колесо нагнетателя, которое под воздействием газов вращается в своем корпусе, имеющем особую форму для улучшения кинематики прохождения выхлопных газов.

Температура здесь весьма высока, а потому корпус и сам ротор турбины вместе с ее крыльчаткой выполняются из жаропрочных сплавов, способных выдерживать длительное высокотемпературное воздействие. Также в последнее время для этих целей используются керамические композиты.

Компрессорное колесо, вращаемое за счет энергии турбины, осуществляет всасывание воздуха, его сжатие и последующее нагнетание в цилиндры силового агрегата. При этом вращение компрессорного колеса также производится в отдельной камере, куда попадает воздух после прохождения через воздухозаборник и фильтр.

Как турбинное, так и компрессорные колеса, как уже говорилось выше, жестко закрепляются на роторном валу. При этом вращение вала производится с помощью подшипников скольжения, которые смазываются моторным маслом из основной системы смазки двигателя.

Подача масла к подшипникам производится по каналам, которые располагаются непосредственно в корпусе каждого подшипника. Для того, чтобы герметизировать вал от попадания масла внутрь системы, используются специальные уплотнительные кольца из жаростойкой резины.

Безусловно, основной конструктивной сложностью для инженеров при проектировании турбонагнетателей является организация их эффективного охлаждения. Для этого в некоторых бензиновых моторах, где тепловые нагрузки наиболее высоки, нередко применяется жидкостной охлаждение нагнетателя. При этом корпус, в котором расположены подшипники, включается в двухконтурную систему охлаждения всего силового агрегата.

Еще одним важным элементом системы турбонаддува является интеркулер. Его предназначением выступает охлаждение поступающего воздуха. Наверняка многие из читателей этого материала зададутся вопросом о том, зачем охлаждать «забортный» воздух, если его температура и так невелика?

Ответ кроется в физике газов. Охлажденный воздух увеличивает свою плотность и, как результат, возрастает его давление. При этом конструктивно интеркулер представляет собой воздушный либо жидкостный радиатор. Проходя через него, воздух снижает температуру и увеличивает свою плотность.

Важной деталью системы турбонаддува автомобиля выступает регулятор давления наддува, представляющий собой перепускной клапан. Он применяется с целью ограничить энергию отработавших газов двигателя и направляет их часть в сторону от колеса турбины, что позволяет регулировать давление наддува

Привод клапана может быть пневматическим или электрическим, а его срабатывание осуществляется за счет сигналов, получаемых от датчика давления наддува, которые обрабатываются блоком управления двигателем автомобиля. Именно электронный блок управления (ЭБУ) подает сигналы на открытие или закрытие клапана в зависимости от данных, получаемых датчиком давления.

Помимо клапана, регулирующего давление наддува, в воздушном тракте непосредственно после компрессора (где давление максимально) может монтироваться предохранительный клапан. Целью его использования является защита системы от скачков давления воздуха, которые могут быть в случае резкого перекрытия дроссельной заслонки двигателя.

Избыточное давление, возникающее в системе, стравливается в атмосферу с помощью так называемого блуофф-клапана, либо направляется на вход в компрессор клапаном типа bypass.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector