Кумулятивные снаряды: как они уничтожают танки

Разновидности ПБ снарядов

В настоящее время разработано несколько эффективных конструкций подкалиберных снарядов, которые используются вооруженными силами различных стран. В частности, речь идет о следующем:

  • С неотделяющимся поддоном. Весь путь до цели снаряд проходит как единое целое. В пробитии же участвует только сердечник. Такое решение не получило достаточного распространения по причине повышенного аэродинамического сопротивления. В результате чего показатель бронепробития и точности с расстоянием до цели существенно падает.
  • С неотделяющимся поддоном для конического орудия. Суть такого решения в том, что при прохождении по коническому стволу поддон сминается. Это позволяет уменьшить аэродинамическое сопротивление.
  • Подкалиберный снаряд с отделяющимся поддоном. Суть в том, что поддон срывается силами воздуха или же центробежными силами (при нарезном орудии). Это позволяет существенно снизить сопротивление воздуха в полете.

Опыты с водой и желатиновой броней

Воссоздать кумулятивный эффект при желании можно даже в домашних условиях. Для этого понадобятся дистиллированная вода и высоковольтный разрядник. Последний можно изготовить, к примеру, из кабеля, припаяв к его оплетке соосно с основной жилой медную шайбу. Далее центральный провод нужно соединить с конденсатором.

Роль воронки в этом эксперименте может исполнить мениск, образующийся в тонкой бумажной трубке. Разрядник и капилляр нужно соединить тонкой эластичной трубкой. Далее следует налить воду в трубку с помощью шприца. После образования мениска на расстоянии примерно в 1 см от разрядника нужно завести конденсатор и замкнуть контур закрепленным на изолирующей штанге проводником.

В области пробоя при таком домашнем эксперименте разовьется большое давление. Ударная волна побежит к мениску и схлопнет его.

Механизм действия кумулятивного заряда[править | править код]

Кумулятивная струяправить | править код

После взрыва капсюля-детонатора заряда, возникает детонационная волна, которая перемещается вдоль оси заряда.

Волна, распространяясь к облицовке поверхности конуса, схлопывает её в радиальном направлении, при этом в результате соударения частей облицовки давление в ней резко возрастает. Давление продуктов взрыва, достигающее порядка 1010Па (105 кгс/см²), значительно превосходит предел текучести металла, поэтому движение металлической облицовки под действием продуктов взрыва подобно течению жидкости, которое, однако, обусловлено не плавлением, а пластической деформацией.

Аналогично жидкости, металл облицовки формирует две зоны: большой по массе (порядка 70—90 %) медленно двигающийся «пест» и меньшую по массе (порядка 10—30 %) тонкую (порядка толщины облицовки) гиперзвуковую металлическую струю, перемещающуюся вдоль оси симметрии заряда, скорость которой зависит от скорости детонации взрывчатого вещества и геометрии воронки. При использовании воронок с малыми углами при вершине возможно получить крайне высокие скорости, но при этом возрастают требования к качеству изготовления облицовки, так как повышается вероятность преждевременного разрушения струи. В современных боеприпасах используются воронки со сложной геометрией (экспоненциальные, ступенчатые и др.) с углами в диапазоне от 30 до 60°; скорость кумулятивной струи при этом достигает 10 км/с.

Процесс запрессовки медной облицовочной юбки, она же в виде готового изделия и внутри снаряженного боеприпаса в разрезе

Поскольку при встрече кумулятивной струи с бронёй развивается очень высокое давление, на один-два порядка превосходящее предел прочности металлов, то струя взаимодействует с бронёй в соответствии с законами гидродинамики, то есть при соударении они ведут себя как идеальные жидкости. Прочность брони в её традиционном понимании в этом случае практически не играет роли, а на первое место выходят показатели плотности и толщины бронирования.

Теоретическая пробивная способность кумулятивных снарядов пропорциональна длине кумулятивной струи и квадратному корню отношения плотности облицовки конуса (воронки) к плотности брони. Практическая глубина проникновения кумулятивной струи в монолитную броню у существующих боеприпасов варьируется в диапазоне от 1,5 до 4 калибров.

При схлопывании конической оболочки скорости отдельных частей струи оказываются различными, и струя в полёте растягивается. Поэтому небольшое увеличение промежутка между зарядом и мишенью увеличивает глубину пробивания за счёт удлинения струи. Однако при значительных расстояниях между зарядом и мишенью непрерывность струи нарушается, что снижает бронебойный эффект. Наибольший эффект достигается на так называемом «фокусном расстоянии», на котором струя максимально растянута, но ещё не разорвана на отдельные фрагменты. Для выдерживания этой дистанции используют различные типы наконечников соответствующей длины.

При перемещении в твёрдой среде градиентно разорванная кумулятивная струя самоцентрируется, а диаметр трека по мере удаления от точки фокуса уменьшается. При движении разорванной на фрагменты кумулятивной струи в жидкостях и газах каждый фрагмент перемещается по собственной траектории, а диаметр трека по мере удаления от точки фокуса увеличивается. Этим объясняется резкое снижение пробивной способности высокоградиентных кумулятивных струй при использовании противокумулятивных экранов.

Использование заряда с кумулятивной выемкой без металлической облицовки снижает кумулятивный эффект, так как вместо металлической струи действует струя газообразных продуктов взрыва; однако при этом достигается значительно более сильное заброневое действие.

Ударное ядроправить | править код

Основная статья: Ударное ядро

Ударное ядро — компактная металлическая форма, напоминающая пест, образующаяся в результате сжатия металлической облицовки кумулятивного заряда продуктами его детонации.

Для образования ударного ядра кумулятивная выемка имеет тупой угол при вершине или форму сферического сегмента переменной толщины (у краёв толще, чем в центре). Под влиянием ударной волны происходит не схлопывание конуса, а выворачивание его «наизнанку». Полученный снаряд диаметром в четверть и длиной в один калибр (первоначальный диаметр выемки) разгоняется до скорости 2,5 км/с. Бронебойное действие ядра ниже, чем у кумулятивной струи, но зато сохраняется на расстоянии до 1000 калибров. В отличие от кумулятивной струи, состоящей лишь из 15 % массы облицовки, ударное ядро образуется из 100 % её массы.

Ручная противотанковая граната РПГ-40 обр.1940 г.

Предназначалась для борьбы с легкими и средними танками, имеющими броню до 20 мм и другим целям. Серийное производство началось лишь с начала войны.

Вес РПГ — 40 — 1200 г, вес разрывного заряда 760 г. Граната состоит из жестяного корпуса, в котором помещается разрывной заряд — литой или прессованный тротил, сверху крышка как у РГД-33, под которую вставлялся запал, внешне тоже очень похожий на запал РГД-33, но мгновенного действия. Корпус при заряжании навинчивался на рукоятку, в которой размещался ударный и предохранительный механизмы.

Воспламенение запала и взрыв гранаты происходит мгновенно при ударе гранаты о препятствие. Метание гранаты производилось из-за укрытия, так как радиус ее разрушительного действия 20 м, а забросить ее на большее расстояние проблематично.


При ударе о препятствие механизм гранаты срабатывает независимо от того, каким местом граната ударилась, граната взрывается. Усилие срабатывания весьма незначительно, достаточно просто уронить гранату на землю.

В боевой обстановке снаряжать гранаты запалами разрешалось лишь непосредственно перед метанием. Отказы в действии происходили из-за загрязнения, промерзания и деформации находившегося в рукоятке ударного механизма. Возможны отказы от неисправного запала.

РПГ-40 встречается во всех районах боевых действий, особенно в начальный период войны. Обнаруженная при поиске — опасная находка.

История создания

Дата Событие
1864 г. Открытие кумулятивного эффекта, что позволило разработать принцип кумулятивного снаряда для производства боеприпасов
1910 г. – 1926 г. Исследование кумулятивного эффекта, создание кумулятивных снарядов и их испытание
1935 г. Создание первых удачных кумулятивных снарядов немецким ученым Францем Рудольфом
1940 г. Начало работ американских ученых по созданию кумулятивных снарядов и гранат. Использование кумулятивных снарядов немецкой армией
1942 г. Создание и принятие на вооружение СССР кумулятивных снарядов. Период, когда появились кумулятивные снаряды в артиллерии
1950 г. Создание учеными США первого снаряда с высокой стабилизацией и начало работ по совершенствованию кумулятивного оружия
1960 г. Разработка и испытание советских ученых сбалансированного кумулятивного снаряда
1990 г. Советские ученые создали первые кумулятивные боеприпасы тандемного вида с пробитием брони до 800 мм

В 1864 году военный инженер М. Бересков (он стал первым, кто придумал кумулятивный снаряд) открыл кумулятивный эффект, после чего начал испытание и применение разработок в разрушении твердых объектов. Военные были поражены, как действует кумулятивный снаряд на бронированную технику. Именно с этого момента западные ученые начали исследование данного эффекта.

С 1910 по 1926 годы продолжались исследовательские работы и создание разнотипных кумулятивных снарядов и мин. Целью этих опытов было нахождение правильной формы и материла, которые в совместном использовании могли пробивать объекты, имевшие большую толщину бронирования.

В 1935 году молодой немецкий ученый начал работы по созданию кумулятивных артиллерийских снарядов, которые активно использовались в начальном этапе Второй Мировой войны. Увидев потенциал кумулятивных снарядов, советские ученые на примере немецких боеприпасов начали разработку и производство собственного оружия. В 1942 году кумулятивные советские снаряды начали использоваться на артиллерийском оружии калибра 76 и 122 мм.

Устройство кумулятивного снаряда Второй Мировой войны

В середине 1950 года ученые США запатентовали новый тип кумулятивного снаряда, который обладал высокой стабилизацией во время полета и имел уникальную металлическую облицовку. В этом же году новый тип снарядов был принят на вооружение США.

В 1960 году создали уникальный кумулятивный снаряд имеющий новую структуру и материалы, которые во много раз превосходили кумулятивные снаряды Второй мировой войны. С этого момента были начаты упорные работы по улучшению уже имевшихся разработок.

В 1990 году был создан кумулятивный тандемный снаряд калибра 130 мм и имевший пробитие 800 мм.

Схема устройства кумулятивного снаряда

Кумулятивный снаряд состоит из частей:

  • взрыватель;
  • головка;
  • кумулятивная воронка;
  • кольцо;
  • разрывной заряд;
  • капсюль детонатор;
  • фиксатор;
  • трассер;
  • стабилизатор;
  • корпус;
  • лопасть.

История создания

Дата Событие
1864 г. Открытие кумулятивного эффекта, что позволило разработать принцип кумулятивного снаряда для производства боеприпасов
1910 г. – 1926 г. Исследование кумулятивного эффекта, создание кумулятивных снарядов и их испытание
1935 г. Создание первых удачных кумулятивных снарядов немецким ученым Францем Рудольфом
1940 г. Начало работ американских ученых по созданию кумулятивных снарядов и гранат. Использование кумулятивных снарядов немецкой армией
1942 г. Создание и принятие на вооружение СССР кумулятивных снарядов. Период, когда появились кумулятивные снаряды в артиллерии
1950 г. Создание учеными США первого снаряда с высокой стабилизацией и начало работ по совершенствованию кумулятивного оружия
1960 г. Разработка и испытание советских ученых сбалансированного кумулятивного снаряда
1990 г. Советские ученые создали первые кумулятивные боеприпасы тандемного вида с пробитием брони до 800 мм

В 1864 году военный инженер М. Бересков (он стал первым, кто придумал кумулятивный снаряд) открыл кумулятивный эффект, после чего начал испытание и применение разработок в разрушении твердых объектов. Военные были поражены, как действует кумулятивный снаряд на бронированную технику. Именно с этого момента западные ученые начали исследование данного эффекта.

С 1910 по 1926 годы продолжались исследовательские работы и создание разнотипных кумулятивных снарядов и мин. Целью этих опытов было нахождение правильной формы и материла, которые в совместном использовании могли пробивать объекты, имевшие большую толщину бронирования.

В 1935 году молодой немецкий ученый начал работы по созданию кумулятивных артиллерийских снарядов, которые активно использовались в начальном этапе Второй Мировой войны. Увидев потенциал кумулятивных снарядов, советские ученые на примере немецких боеприпасов начали разработку и производство собственного оружия. В 1942 году кумулятивные советские снаряды начали использоваться на артиллерийском оружии калибра 76 и 122 мм.

Устройство кумулятивного снаряда Второй Мировой войны

В середине 1950 года ученые США запатентовали новый тип кумулятивного снаряда, который обладал высокой стабилизацией во время полета и имел уникальную металлическую облицовку. В этом же году новый тип снарядов был принят на вооружение США.

В 1960 году создали уникальный кумулятивный снаряд имеющий новую структуру и материалы, которые во много раз превосходили кумулятивные снаряды Второй мировой войны. С этого момента были начаты упорные работы по улучшению уже имевшихся разработок.

В 1990 году был создан кумулятивный тандемный снаряд калибра 130 мм и имевший пробитие 800 мм.

Схема устройства кумулятивного снаряда

Кумулятивный снаряд состоит из частей:

  • взрыватель;
  • головка;
  • кумулятивная воронка;
  • кольцо;
  • разрывной заряд;
  • капсюль детонатор;
  • фиксатор;
  • трассер;
  • стабилизатор;
  • корпус;
  • лопасть.

Принцип действия

Встречаясь с броней, струя не прожигает, а как-бы вымывает отверстие в броне под действием высокой температуры и высокого давления, одновременно смешиваясь с металлом брони, но оставаясь фактически твердым телом (явление пластической деформации). Пробив корпус частицы металла, они поражают экипаж и все внутри танка.

Таким образом, небольшое отверстие на внешней стороне машины оборачивается практически полным разрушением внутри. К тому же, высокая температура кумулятивной струи провоцирует возгорание и последующий подрыв боекомплекта. Такой принцип поражения бронированной техники применялся в гранатах и минах.

Бомбардировочная «Игра престолов»

История этой машины полнится скандалами, интригами и даже заговорами. По одной из версий, именно с заговора и начался весь проект.

В 1960 году правительство СССР приняло судьбоносное решение о сворачивании работ над обычной авиацией в пользу ракет. По сей день о его пользе или вреде ломают копья историки, но появления будущего Т-4 иначе просто не случилось бы. Были закрыты все работы по межконтинентальным бомбардировщикам, прошёл черезгеноцид» лишь один проект — туполевский135».

Он представлял собой сверхзвуковой стратегический ракетоносец, в чьи задачи входила борьба с авианосцами США в относительно отдалённых акваториях вроде Индийского океана и Средиземного моря. Также он мог заниматься разведкой и ударами по наземным объектам в Европе. Дополнительные топливные баки позволяли достигать и межконтинентальной дальности.

Один из вариантов стратегического сверхзвукового бомбардировщика-ракетоносца135»

Как гласит одна из легенд, Хрущёв был бы рад закрыть и135», но Туполев имел слишком большой вес в промышленности и у военных. Тогда родился хитрый план — провести конкурс на ракетоносец, сделав всё, чтобы Туполев проиграл. В качестве оппонентов выбралиистребительные» КБ(конструкторские бюро) Сухого и Яковлева, ведь если бы один из них победил, можно было бы с лёгкостью закрыть проект, сославшись на недостаток опыта.

Существует и менее конспирологическая версия: решить задачу борьбы с авианосцами только ракетами на тот момент не имелось возможности, а после разгрома КБ Мясищева Туполев остался монополистом в этой отрасли — поэтому и привлекли конструкторов истребителей.

Стратегический сверхзвуковой бомбардировщик-ракетоносец Як-35. Реконструкция А. Жирнова

Как бы то ни было, к 1962 году все три КБ подготовили свои проекты. Самолёты Сухого и Яковлева по характеристикам походили друг на друга. Дальность в четыре тысячи километров с боевой нагрузкой, взлётная масса около 110 тонн, максимальная скорость в три тысячи километров в час — всё по требованиям заказчика. Разница была в размещении двигателей и форме крыла.

Вариант стратегического сверхзвукового бомбардировщика-ракетоносца Т-4/100», представленный в 1962 году. Реконструкция А. Жирнова

Туполевская машина серьёзно отличалась от конкурентов: была меньше скорость, всего 2500 километров в час. Это объяснялось тем, что бомбардировщик сделали не из стали с титаном, как другие проекты, а в основном из алюминия. Это снижало допустимую максимальную скорость, но упрощало и удешевляло проект: строить самолёты из стали с титаном было очень сложно и невообразимо дорого. Туполев считал, что разница в скорости в 500 километров в час в данном случае несущественна. Кроме того,135» весил под 190 тонн — исключительно из желания сэкономить. За счёт веса бомбардировщик имел запас топлива для межконтинентальных перелётов, а значит, был универсальнее своих конкурентов.

Финальный внешний вид бомбардировщика-ракетоносца Т-4

Взрыватели фугасных снарядов

Первым взрывателем осколочно-фугасных боеприпасов был обычный фитиль, который поджигался при выстреле из пушки и инициировал подрыв ВВ через определенное время. Однако после появления нарезных орудий и снарядов конической формы, что гарантировало встречу с препятствием передней части корпуса, появились взрыватели ударного действия. Их преимущество заключалось в том, что подрыв ВВ происходил сразу после контакта с преградой. Для разрушения ударные взрыватели оснастили замедлителем. Это позволяло боеприпасу сначала проникнуть внутрь препятствия, тем самым резко усиливая его эффективность. Оснастив фугас с таким взрывателем более массивным корпусом с толстыми стенками (что позволяло, за счет кинетической энергии, проникать глубоко в стены долговременных огневых точек), получили бетонобойный снаряд.

Кстати, на начальном этапе Великой Отечественной войны при помощи 152-миллиметровых бетонобойных снарядов успешно боролись с немецкой бронетехникой. При попадании в средний или легкий немецкий танк снаряд, за счет своего веса, сначала разрушал машину, срывал башню, а потом взрывался. Недостатком ударных взрывателей было то, что при попадании в вязкую почву (например, болото) они не срабатывали. Эту проблему смог устранить дистанционный взрыватель, позволяющий произвести подрыв боеприпаса на определенном расстоянии от среза ствола орудия. В настоящее время данный тип детонатора применяется практически во всех ОФС. Он позволяет, например, вести стрельбу из танковых пушек по воздушным целям (вертолетам).

За и против

У кумулятивных боеприпасов есть свои достоинства и недостатки. К достоинствам относится то, что, в отличие от подкалиберных снарядов, их бронепробитие не зависит от скорости самого снаряда: кумулятивными можно стрелять даже из легких орудий, не способных разогнать снаряд до высокой скорости, а также использовать такие заряды в реактивных гранатах.

Кстати, именно «артиллерийское» применение кумуляции сопряжено с трудностями. Дело в том, что большинство снарядов стабилизируется в полете вращением, а оно крайне отрицательно влияет на формирование кумулятивной струи — изгибает и разрушает ее. Конструкторы добиваются снижения эффекта вращения различными способами — например, применяя специальную текстуру облицовки (но при этом и бронепробитие понижено до 2−3 калибров).

Другое решение используется во французских снарядах — вращается только корпус, а кумулятивный заряд, установленный на подшипниках, практически не вращается. Однако такие снаряды сложны в производстве, а к тому же в них не полностью используются возможности калибра (а бронепробитие связано с калибром напрямую).

Собранная нами установка вовсе не выглядит аналогом грозного оружия и смертельного врага танков — кумулятивных бронебойных снарядов. Тем не менее она представляет собой достаточно точную модель кумулятивной струи. Разумеется, в масштабе — и скорость звука в воде меньше скорости детонации, и плотность воды меньше плотности обкладки, да и калибр у настоящих снарядов побольше. Наша установка отлично подходит для демонстрации таких явлений, как фокусировка струи.

Казалось бы, выстреливаемые с высокой скоростью из гладкоствольных пушек снаряды не вращаются — их полет стабилизирует оперение, но и в этом случае есть проблемы: при высоких скоростях встречи снаряда с броней струя не успевает сфокусироваться. Поэтому наиболее эффективны кумулятивные заряды в низкоскоростных или вообще неподвижных боеприпасах: снарядах для легких пушек, реактивных гранатах, ПТУРах, минах.

Еще один недостаток связан с тем, что кумулятивная струя разрушается взрывной динамической защитой, а также при прохождении нескольких сравнительно тонких слоев брони. Для преодоления динамической защиты разработан тандемный боеприпас: первый заряд подрывает ее ВВ, а второй пробивает основную броню.

Медицина

Как было известно ранее, кумулятивный эффект — это то, что достигается путем многократного воздействия определенных факторов. Например, при повторном введении в организм конкретной дозы лекарственного вещества или яда воздействие усиливается. Это происходит потому, что в организме происходит накопление препарата и действие суммируется. Точно также будет и с последующими введенными дозами медикамента.

Также при достижении кумулятивного эффекта в медицине организм может вырабатывать толерантность. Это значит, что снижается чувствительность к вводимому препарату. Однако повышать дозу не рекомендуется из-за возможности развития интоксикации.

О кумулятивах

Впервые подобные боеприпасы были использованы нацистской Германией в 1941 году. Тогда в СССР не ожидали использования подобных снарядов, так как их принцип действия хоть и был известным, но на вооружении их еще не было. Ключевой особенностью подобных снарядов было то, что они обладали высокой бронепробиваемостью за счет наличия взрывателей мгновенного действия и кумулятивной выемкой. Проблема, с которой столкнулись впервые, заключалась в том, что снаряд по время полета вращался. Это приводило к рассеиванию кумулятивной стрелы и, как следствие, пониженной бронепробиваемости. Чтобы исключить негативный эффект, было предложено применять гладкоствольные пушки.

Особенности конструкции фугасных боеприпасов

Фугасное действие снарядов требует задержки срабатывания взрывателя, поэтому все взрывные соединения, применяемые для фугасных снарядов, должны быть нечувствительны к ударам. Это в полной мере относится и к обычным снарядам, так как в противном случае их просто разорвет в канале пушки.

Боеприпасы имеют ограниченный срок годности. В тоже время в них используются очень стойкие химические взрывчатые соединения, спрятанные в герметичный корпус. Срок годности по нормативам специально занижен в разы. Это сделано для надежности, так как просроченный снаряд становится более чувствителен к ударам, и вероятность его разрыва в канале пушки увеличивается. Теоретически, стрельба просроченными снарядами возможна, но обращаться с ними нужно очень аккуратно, и при выстреле в зоне поражения не должно быть людей.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector