Боеприпасы с кумулятивным зарядом. история развития эффекта берескова

Принцип работы кумулятивного снаряда

Во время Великой Отечественной войны был разработан кумулятивный снаряд, принцип действия которого основывался на направленном взрыве. В нем установлена металлическая конусная воронка, которая имеет толщину стенок до одного сантиметра. Широкий край воронки повернут напрямую к мишени. После столкновения взрывателя с объектом создается давление, которое идет по конусу в центр снаряда.

10 км
в секунду, такую скорость имеет высвобождаемая снарядом обратная струя

После чего снаряд высвобождает под огромным давлением в обратную сторону металлическую струю, которая имеет скорость до 10 км в секунду. Высвобождаемая снарядом металлическая струя начинает входить в броню или в любой другой объект на высокой скорости, при этом игнорируя толщину объекта воздействия. Именно таков принцип работы кумулятивного снаряда.

Кумулятивный снаряд в разрезе

Что такое кумулятивный снаряд? Если описать все более просто, то при воздействии кумулятивного снаряда броня под давлением превращается в жидкость.

Сравнение снарядов различного типа

Действие кумулятивной снаряда напрямую зависит от размера, используемого материала и объекта воздействия. Пробитие таких снарядов может превышать их калибр от пяти до десяти раз.

Разновидности ПБ снарядов

В настоящее время разработано несколько эффективных конструкций подкалиберных снарядов, которые используются вооруженными силами различных стран. В частности, речь идет о следующем:

  • С неотделяющимся поддоном. Весь путь до цели снаряд проходит как единое целое. В пробитии же участвует только сердечник. Такое решение не получило достаточного распространения по причине повышенного аэродинамического сопротивления. В результате чего показатель бронепробития и точности с расстоянием до цели существенно падает.
  • С неотделяющимся поддоном для конического орудия. Суть такого решения в том, что при прохождении по коническому стволу поддон сминается. Это позволяет уменьшить аэродинамическое сопротивление.
  • Подкалиберный снаряд с отделяющимся поддоном. Суть в том, что поддон срывается силами воздуха или же центробежными силами (при нарезном орудии). Это позволяет существенно снизить сопротивление воздуха в полете.

Танковая эволюция

Первые танки представляли собой медлительные подвижные артиллерийские батареи (иногда с несколькими орудиями), защищенные противопульным бронированием. Это были аналоги бронепоездов, с той разницей, что двигаться они могли не по рельсам, а по пересеченной местности и, само собой разумеется, по дорогам. Эволюция технических решений привела к новым способам применения бронетехники, она стала мобильнее и переняла часть функций кавалерии. Наиболее передовыми достижениями могла похвалиться советская инженерная школа, которая уже к концу тридцатых годов XX века пришла к общей концепции, определяющей облик современного танка. Все остальные страны до конца войны продолжали строить боевые машины по устаревшей схеме, с передней трансмиссией, узкими гусеницами, клепаными корпусами и карбюраторными двигателями. Несколько больших по сравнению с Великобританией и США успехов добилась нацистская Германия. Инженеры, строившие «Тигры» и «Пантеры» сделали ряд попыток увеличить стойкость своих машин, применив наклонное бронирование. Ширину гусениц немцам тоже пришлось изменить согласно условиям Восточного фронта. Длинноствольные орудия стали еще одним признаком, приближающим характеристики танков Вермахта к современным стандартам. На этом прогресс в стане наших врагов остановился.

Деталировка стандартного кумулятивного снаряда

Кумулятивный снаряд состоит из:

  • Взрывателя и головки;
  • выемки и кольца;
  • заряда и детонатора;
  • фиксатора и трассера;
  • стабилизатора, корпуса, лопасти.

Понятие кумулятивного эффекта

Эффект изобретённый Бересковым, означает мгновенное усиление происходящих процессов, за счёт слаженности совместных усилий.

В одной из частей заряда изготавливают небольшое углубление, которое покрывается слоем металла общей толщиной в 1-3 мм. Это углубление всегда повернуто к цели.

Взрыв, происходящий на краю воронки, заставляет взрывную волну проходить по боковым стенкам, тем самым сплющивая их к оси снаряда. Во время взрыва создаётся большое давление, которое трансмутирует облицовку воронки в квазижидкость , затем перемещает её вдоль оси боеприпаса. Эти действия образуют струю, которая развивает скорость до (10км/с).

ВАЖНО! Облицовка не расплавляется, а деформируется в жидкость под воздействием высокого давления на неё. Если кумулятивная струя попала в цель, то прочность брони не имеет значения

Важна лишь плотность и толщина металла

Пробивная способность струи металла зависит от:

Важна лишь плотность и толщина металла. Пробивная способность струи металла зависит от:

Если кумулятивная струя попала в цель, то прочность брони не имеет значения. Важна лишь плотность и толщина металла. Пробивная способность струи металла зависит от:

  • длины;
  • плотности облицовки;
  • материала брони цели.

ВАЖНО! Максимально эффективное действие (фокусное), возникает при взрыве снаряда на небольшом расстоянии от бронированной цели. Броня и кумулятивный заряд взаимодействуют между собой, т.е.  созданное от взрыва составных частей снаряда давление настолько высокое, что самая крепкая броня, поведёт себя словно жидкость. Стандартный боеприпас пробивает броню толщиной от 5 до 8 его калибров

Стандартный боеприпас пробивает броню толщиной от 5 до 8 его калибров

Броня и кумулятивный заряд взаимодействуют между собой, т.е.  созданное от взрыва составных частей снаряда давление настолько высокое, что самая крепкая броня, поведёт себя словно жидкость. Стандартный боеприпас пробивает броню толщиной от 5 до 8 его калибров.

Обратите внимание! Если облицовка воронки выполнена из обеднённого урана, бронебойность снаряда повышается до 10 калибров. Плюсы и минусы. Плюсы и минусы

Плюсы и минусы

У кумулятивных боеприпасов, есть положительные и отрицательные стороны. Абсолютные плюсы таких снарядов:

  • Пробивание почти любого слоя брони;
  • Струя пробивает броню независимо от изначальной скорости полёта снаряда;
  • Мощное действие после попадание в цель.

Но и у кумулятивных боеприпасов есть свои минусы:

  1. Трудности в массовом производстве, из-за сложности конструкции;
  2. Большие сложности в применении боеприпасов РСЗО;
  3. Уязвимости в пробитии динамической брони.

Боевая часть с кумулятивным эффектом, используется при производстве боеприпасов для РПГ, противотанковых пушек и мин. При попадании в цель снаряда, начиненного «жидким металлом», в большой вероятности произведёт взрыв боекомплекта. При этом экипаж погибнет.

Интересный факт! Современные ПТРК способны пробить броневой лист толщиной 10 см.

За и против

У кумулятивных боеприпасов есть свои достоинства и недостатки. К достоинствам относится то, что, в отличие от подкалиберных снарядов, их бронепробитие не зависит от скорости самого снаряда: кумулятивными можно стрелять даже из легких орудий, не способных разогнать снаряд до высокой скорости, а также использовать такие заряды в реактивных гранатах.

Кстати, именно «артиллерийское» применение кумуляции сопряжено с трудностями. Дело в том, что большинство снарядов стабилизируется в полете вращением, а оно крайне отрицательно влияет на формирование кумулятивной струи — изгибает и разрушает ее. Конструкторы добиваются снижения эффекта вращения различными способами — например, применяя специальную текстуру облицовки (но при этом и бронепробитие понижено до 2−3 калибров).

Другое решение используется во французских снарядах — вращается только корпус, а кумулятивный заряд, установленный на подшипниках, практически не вращается. Однако такие снаряды сложны в производстве, а к тому же в них не полностью используются возможности калибра (а бронепробитие связано с калибром напрямую).

Собранная нами установка вовсе не выглядит аналогом грозного оружия и смертельного врага танков — кумулятивных бронебойных снарядов. Тем не менее она представляет собой достаточно точную модель кумулятивной струи. Разумеется, в масштабе — и скорость звука в воде меньше скорости детонации, и плотность воды меньше плотности обкладки, да и калибр у настоящих снарядов побольше. Наша установка отлично подходит для демонстрации таких явлений, как фокусировка струи.

Казалось бы, выстреливаемые с высокой скоростью из гладкоствольных пушек снаряды не вращаются — их полет стабилизирует оперение, но и в этом случае есть проблемы: при высоких скоростях встречи снаряда с броней струя не успевает сфокусироваться. Поэтому наиболее эффективны кумулятивные заряды в низкоскоростных или вообще неподвижных боеприпасах: снарядах для легких пушек, реактивных гранатах, ПТУРах, минах.

Еще один недостаток связан с тем, что кумулятивная струя разрушается взрывной динамической защитой, а также при прохождении нескольких сравнительно тонких слоев брони. Для преодоления динамической защиты разработан тандемный боеприпас: первый заряд подрывает ее ВВ, а второй пробивает основную броню.

Кумулятивные боеприпасы и их поражающие факторы

H 50 (Hohlladung 50 kg) — один из первых серийных кумулятивных зарядов. Применялся для разрушения оборонительных укреплений во время Второй мировой войны.

Несмотря на относительно слабое заброневое действие, кумулятивная граната при попадании в башню, как правило, убивает одного или более членов экипажа бронемашины, может вывести из строя вооружение, подорвать боекомплект. Попадание в моторное отделение делало машину неподвижной мишенью, а если на пути кумулятивной струи встречались топливопроводы, происходило воспламенение топлива.

Виктор Мураховский отмечает, что широко распространен миф о том, что кумулятивные заряды поражают избыточным давлением и температурой, но это не соответствует действительности. Поражение защищённой цели достигается действием короткой кумулятивной струи небольшого диаметра, создающей давление в несколько тонн на квадратный сантиметр (что превышает предел текучести металлов) и пробивающей небольшое отверстие около 8 мм в броне. Весь наблюдаемый визуально взрыв кумулятивного заряда происходит до брони и избыточное давление и температура не могут проникнуть через небольшое отверстие и не являются основными поражающими факторами. Устанавливаемые внутри танков датчики давления и температуры не фиксируют существенного фугасного или термического воздействия после пробивания брони кумулятивной струей. Основной поражающий фактор кумулятивного заряда — это отрываемые осколки и капли брони. При попадании на боекомплект танка осколков и капель от пробитой брони возможно его воспламенение и детонация с разрушением бронемашины. Если кумулятивная струя и  капли   брони не поражают людей и пожаро-/взрывоопасное оборудование танка, то в целом прямое попадание даже мощного кумулятивного заряда может не вывести из строя танк.

Тяжёлые ПТУР (типа 9М120 «Атака», «Хеллфайр») при попадании в бронированные машины лёгкого класса с противопульной защитой своим синергетическим действием могут уничтожить не только экипаж, но и частично или полностью разрушить машины. С другой стороны, воздействие большинства носимых ПТС на ББМ (при отсутствии детонации боеприпасов ББМ) не столь критично — здесь наблюдается обычный эффект заброневого действия кумулятивной струи, а поражения экипажа избыточным давлением не происходит.

См. также Кумулятивно-осколочный снаряд

Типы

Бронебойный выстрел и снаряды
Изображение Имя Описание
Бронебойный
Бронебойный колпачок (APC) Серый: крышка
Бронебойный баллистический колпачок (APBC) Белый: баллистический колпачок
Бронебойно-бронебойный баллистический колпачок (APCBC) Серый: колпачок ~ Белый: баллистический колпачок
Бронебойный композитный жесткий (APCR) / бронебойный бронебойный (HVAP) Синий: твердый материал высокой плотности
Бронебойно-фугасное (APHE) / полу-бронебойное фугасное (SAPHE) Красный: взрывоопасный
Сабо для снятия бронебойного снаряжения (APDS) Синий: пенетратор
Бронебойно-стабилизированная сабо для выбрасывания (APFSDS) Синий: пенетратор

История

Пробитый взрывом кумулятивного заряда наблюдательный купол в форте Эбен-Эмаль. В центре снимка виден пролом, образованный воздействием кумулятивной струи.

В 1792 году горный инженер Франц фон Баадер высказал предположение, что энергию взрыва можно сконцентрировать на небольшой площади, используя полый заряд. Однако в своих экспериментах фон Баадер использовал чёрный порох, который не может формировать необходимую детонационную волну. Впервые продемонстрировать эффект применения полого заряда удалось лишь с изобретением высокобризантных взрывчатых веществ. Это сделал в 1883 году изобретатель Макс фон Фёрстер (Max von Foerster).

Повторно открыл кумулятивный эффект, исследовал и подробно описал его в своих работах американец Чарльз Манро (Charles Edward Munro) в 1888 году.

В Советском Союзе в 1925—1926 годах изучением зарядов взрывчатых веществ с выемкой занимался профессор М. Я. Сухаревский.

В 1938 году Франц Томанэк (Franz Rudolf Thomanek) в Германии и Генри Мохоупт (Henry Hans Mohaupt) в Швейцарии независимо друг от друга открыли эффект увеличения пробивной способности при применении металлической облицовки конуса.

Рентгено-импульсная съемка процесса, осуществленная в 1939 — начале 1940-х годов в лабораториях Германии, США и Великобритании, позволила существенно уточнить принципы действия кумулятивного заряда (традиционная фотосъёмка невозможна из-за вспышек пламени и большого количества дыма при детонации).

Кумулятивные боеприпасы впервые были применены в боевых условиях 10 мая 1940 г. при штурме форта Эбен-Эмаль (Бельгия). Тогда для подрыва укреплений диверсионным отрядом использовались переносные заряды в виде полусфер весом 12,5 и 50 кг.

Одним из неприятных сюрпризов лета 1941 года для танкистов РККА стало применение войсками Германии кумулятивных снарядов и гранат. На подбитых танках обнаруживались пробоины с оплавленными краями, поэтому снаряды получили название «бронепрожигающих». 23 мая 1942 года на Софринском полигоне были проведены испытания снаряда к 76-мм полковой пушке, разработанного НИИ-6 на основе трофейного немецкого снаряда. По результатам испытаний 27 мая 1942 года первый советский кумулятивный снаряд БП-353А принят на вооружение.

В 1949 году Михаил Алексеевич Лаврентьев становится лауреатом Сталинской премии за создание теории кумулятивных струй.

В 1950-е годы был достигнут огромный прогресс в понимании принципов формирования кумулятивной струи. Предложены методы усовершенствования кумулятивных зарядов пассивными вкладышами (линзами), определены оптимальные формы кумулятивных воронок, применена ступенчатая облицовка конуса для компенсации вращения снаряда, разработаны специальные составы взрывчатых веществ. Многие из обнаруженных в те далекие годы явлений изучаются и до настоящего времени.

Кумулятивный снаряд

– артиллерийский снаряд основного назначения, в к-ром для поражения цели используется заряд кумулятивного действия (см. Кумулятивный эффект). Кумулятивный снаряд предназначен для стрельбы по бронированным целям (танкам, БМП, БТР и т. п.), а также по железобетонным фортификац. сооружениям. В СССР первые эксперименты с кумулятивными снарядами проводились в 1934 С.Н.Дядичевым. Опытные кумулятивные снаряды использовались в 1938 во время гражд. войны в Испании. Во 2-й мировой войне кумулятивные снаряды широко применялись всеми воюющими армиями. Первый отечеств. образец кумулятивного снаряда, принятый на вооружение Сов. Армии в янв. 1942, был разработан под руководством К.К.Снитко. Во время Великой Отечеств, войны К. с. иногда называли «броненрожигающим» или «термитным». Кумулятивный снаряд (см. рис.) состоит из корпуса, разрывного заряда, кумулятивной выемки, взрывателя и трассёра. В качестве разрывного заряда используются бризантные ВВ, обладающие высокой скоростью детонации (гексоген и др., а также их смеси и сплавы с тротилом в различных пропорциях). Бронепробиваемость кумулятивного снаряда зависит от формы, размеров и материала облицовки кумулятивной выемки, массы и свойств разрывного заряда, времени срабатывания детонационной цепи (конструкции взрывателя), скорости вращения снаряда, угла встречи его с преградой, характеристик брони. Вращение кумулятивного снарядаприводит к рассеиванию кумулятивной струи под действием центробежной силы и снижению её бронспробиваемости. Поэтому у некоторых кумулятивных снарядов нарезных орудий для исключения вращения предусматривается проворот кумулятивного узла или ведущего пояска относительно корпуса снаряда. Другой путь повышения бронепробиваемости кумулятивного снаряда — применение гладкоствольных орудий. Для стабилизации в полёте невращающиеся кумулятивные снаряды имеют калиберное или надкалиберное оперение; последнее раскрывается после выхода снаряда из канала ствола. Такие устройства способствуют повышению эффективности кумулятивного снаряда, но усложняют конструкцию. Бронепробиваемость вращающихся кумулятивных снарядов обычно около двух калибров, невращающихся — порядка четырёх и более. К сер. 70-х гг. К. с. широко применяются дли стрельбы из арт. орудии различ. типов (в т.ч. танковых и безоткатных). Лит.: Латухин А. Н. Противотанковое во- оруженно. M , 1974, Артиллерия и ракеты. М., 1968.

Защита

Большинство современных систем активной защиты (АПЗ) вряд ли смогут отразить полнокалиберные бронебойные снаряды, выпущенные из крупнокалиберной противотанковой пушки, из-за большой массы выстрела, его жесткости, малой габаритной длины и толстого корпуса. . APS использует осколочные боеголовки или проецируемые пластины, и оба предназначены для поражения двух наиболее распространенных используемых сегодня противобронирующих снарядов: кумулятивного и кинетического пенетратора . Поражение кумулятивных снарядов достигается за счет повреждения / детонации взрывчатого наполнителя кумулятивного заряда или повреждения гильзы кумулятивного заряда или системы взрывателя, а поражение снарядов с кинетической энергией достигается за счет рыскания / тангажа или разрушения стержня.

История

Пробитый взрывом кумулятивного заряда наблюдательный купол в форте Эбен-Эмаль. В центре снимка виден пролом, образованный воздействием кумулятивной струи.

В 1792 году горный инженер Франц фон Баадер высказал предположение, что энергию взрыва можно сконцентрировать на небольшой площади, используя полый заряд. Однако в своих экспериментах фон Баадер использовал чёрный порох, который не может формировать необходимую детонационную волну. Впервые продемонстрировать эффект применения полого заряда удалось лишь с изобретением высокобризантных взрывчатых веществ. Это сделал в 1883 году изобретатель Макс фон Фёрстер (Max von Foerster).

Повторно открыл кумулятивный эффект, исследовал и подробно описал его в своих работах американец Чарльз Манро (Charles Edward Munro) в 1888 году.

В Советском Союзе в 1925—1926 годах изучением зарядов взрывчатых веществ с выемкой занимался профессор М. Я. Сухаревский.

В 1938 году Франц Томанэк (Franz Rudolf Thomanek) в Германии и Генри Мохоупт (Henry Hans Mohaupt) в Швейцарии независимо друг от друга открыли эффект увеличения пробивной способности при применении металлической облицовки конуса.

Рентгено-импульсная съемка процесса, осуществленная в 1939 — начале 1940-х годов в лабораториях Германии, США и Великобритании, позволила существенно уточнить принципы действия кумулятивного заряда (традиционная фотосъёмка невозможна из-за вспышек пламени и большого количества дыма при детонации).

Кумулятивные боеприпасы впервые были применены в боевых условиях 10 мая 1940 г. при штурме форта Эбен-Эмаль (Бельгия). Тогда для подрыва укреплений диверсионным отрядом использовались переносные заряды в виде полусфер весом 12,5 и 50 кг.

Одним из неприятных сюрпризов лета 1941 года для танкистов РККА стало применение войсками Германии кумулятивных снарядов и гранат. На подбитых танках обнаруживались пробоины с оплавленными краями, поэтому снаряды получили название «бронепрожигающих». 23 мая 1942 года на Софринском полигоне были проведены испытания снаряда к 76-мм полковой пушке, разработанного НИИ-6 на основе трофейного немецкого снаряда. По результатам испытаний 27 мая 1942 года первый советский кумулятивный снаряд БП-353А принят на вооружение.

В 1949 году Михаил Алексеевич Лаврентьев становится лауреатом Сталинской премии за создание теории кумулятивных струй.

В 1950-е годы был достигнут огромный прогресс в понимании принципов формирования кумулятивной струи. Предложены методы усовершенствования кумулятивных зарядов пассивными вкладышами (линзами), определены оптимальные формы кумулятивных воронок, применена ступенчатая облицовка конуса для компенсации вращения снаряда, разработаны специальные составы взрывчатых веществ. Многие из обнаруженных в те далекие годы явлений изучаются и до настоящего времени.

Кумулятивный эффект

На картинке — наглядная иллюстрация кумулятивного эффекта, или эффекта Манро: падающая в воду капля пробивает углубление в поверхности, которое затем «схлопывается», выбрасывая вверх струйку воды. Когда дети играют и бьют по воде ладонью, чтобы обрызгать друг друга, они тоже создают кумулятивные струи. Термин «кумуляция» происходит от латинского cumulatio — «скопление» или cumulo — «накапливаю» и означает увеличение или усиление какого-либо эффекта за счет сложения или накопления однородных с ним эффектов. В физике этот термин характеризует кратковременные процессы (как правило, это взрывы) и подразумевает усиление их в определенном месте или в направлении действия.

Представьте себе заряд взрывчатого вещества, находящийся в однородной, плотной среде — допустим, в жидкости. В какой-то момент происходит его взрыв, то есть чрезвычайно быстрое выделение запасенной веществом энергии. Продукты взрыва имеют очень высокую температуру, большую плотность и находятся под огромным давлением, они резко сжимают окружающую среду, создавая скачок уплотнения. Этот скачок распространяется по среде со сверхзвуковой скоростью, образуя так называемую «взрывную волну». Если заряд взорвался в небольшой области (точечный взрыв), то волна имеет сферическую форму. Частицы, которым она передает энергию, приобретают скорости, направленные от центра взрыва, и модули этих скоростей для равноудаленных частиц одинаковы. Следовательно, и плотность кинетической энергии во всех направлениях от центра одинакова.

Теперь представьте, что тем или иным способом нам удалось перераспределить энергию взрыва в пространстве, сделав так, чтобы плотность кинетической энергии в одном направлении была значительно больше, чем в остальных. Таким образом, скорость частиц в этом направлении возрастет, и возникнет струя. Именно этот эффект концентрации энергии в одном направлении и называется кумулятивным, а возникающая при этом струя — кумулятивной струей. Конечно, кумулятивные струи могут возникать не только при взрывах

Важно создать такие условия, когда плотность кинетической энергии движущейся среды быстро возрастает в небольшом объеме. И если этот объем не сферически-симметричен, то возникнет струя. Схема кумулятивного эффекта

Изображение с сайта ru.wikipedia.org

Схема кумулятивного эффекта. Изображение с сайта ru.wikipedia.org

Исследователи взрывчатых веществ выяснили, что если в снаряде сделать полое углубление, то разрушительную энергию можно сконцентрировать на небольшом участке. В 1792 году горный инженер Франц фон Баадер провел подобные эксперименты с использованием дымного пороха, однако по-настоящему успешными эти эксперименты стали с появлением высокобризантных веществ. Уже в XIX веке кумулятивный эффект повторно исследовал и подробно описал в своих работах американец Чарльз Манро (Charles Edward Munro). В 1938 году Франц Томанэк (Franz Rudolf Thomanek) в Германии и Генри Мохоупт (Henry Mohaupt) в Швейцарии независимо друг от друга открыли эффект увеличения пробивной способности снаряда, в котором сделано конусное углубление, облицованное металлической воронкой. Эти перспективные разработки не замедлили получить применение у военных — в минно-взрывном деле и в артиллерии. Кумулятивные боеприпасы впервые использовали в боевых условиях 10 мая 1940 года при штурме форта Эбен-Эмаль (Бельгия).

С началом Великой Отечественной войны советские танкисты встретились с кумулятивным оружием немецкой армии — гранатами и снарядами. Поражая бронированные машины, такие снаряды оставляли характерные оплавленные отверстия и были названы «бронепрожигающими». Весной 1942 года на Софринском полигоне испытали снаряд, разработанный на основе немецкого трофея, и затем первый кумулятивный снаряд был принят на вооружение советской армии. В 1949 году советский математик и механик Михаил Алексеевич Лаврентьев становится лауреатом Сталинской премии за создание теории кумулятивных струй.

На чем основано столь мощное действие кумулятивных зарядов? За счет углубления в виде воронки, которая при взрыве «схлопывается», как пробитая каплей поверхность воды, создается газовая струя из продуктов взрыва. Если воронка покрыта металлической облицовкой, струя получается из расплавленного металла высокой температуры. Поражение достигается действием струи небольшого диаметра на участок порядка 80 мм (см. видео). При опредленном расстоянии до цели эта струя имеет мощнейшее бронебойное действие, благодаря которому кумулятивный эффект и получил свою печальную известность.

Демонстрация кумулятивного эффекта на примере разных типов снарядов

Фото с сайта popmech.ru.

Андрей Алубаев

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector