Ур-100н уттх
Содержание:
- Космический бильярд
- Сравнительная характеристика
- Конструкция
- Памятник противоракете
- Миномётный старт МР УР-100
- Миномётный старт МР УР-100[ | ]
- Классификация по защите
- Модификации
- Начало ракетного соперничества
- Сравнительная характеристика
- Программное обеспечение
- Технические характеристики
- Сравнительная характеристика
Космический бильярд
Давний соблазн сравнить американскую и российскую ПРО был реализован в 1994 году, когда в рамках программы «Одеракс» попытались определить возможности радиолокационных средств России и США выявлять и классифицировать так называемый космический мусор.
Кстати, Россия держит первенство и в борьбе с ракетами средней дальности. Во второй половине 2020 года на вооружение Войск ПВО-ПРО ВКС России начала поступать зенитная ракетная система 5-го поколения способная перехватывать ракеты с дальностью пуска до 3.500 километров, а на конечном участке траектории, если такая необходимость возникнет, и межконтинентальные боевые ракеты. Кроме «Прометея», сегодня в единую комплексную систему ПВО-ПРО страны интегрированы С-350 «Витязь», и С-300ВМ4 «Антей-2500». Более серьёзной защиты своего воздушно-космического пространства нет ни у кого.
Сравнительная характеристика
Общие сведения и основные тактико-технические характеристики советских баллистических ракет третьего поколения | ||||
---|---|---|---|---|
Наименование ракеты | РСД-10 | УР-100 НУ | МР УР-100 | Р-36М, Р-36М УТТХ |
Конструкторское бюро | МИТ | НПО «Машиностроение» | КБ «Южное» | |
Генеральный конструктор | А. Д. Надирадзе | В. Н. Челомей | В. Ф. Уткин | |
Организация-разработчик ЯБП и главный конструктор | ВНИИЭФ, С. Г. Кочарянц | ВНИИП, О. Н. Тиханэ | ВНИИЭФ, С. Г. Кочарянц | |
Организация-разработчик заряда и главный конструктор | ВНИИЭФ, Б. В. Литвинов[источник?] | ВНИИЭФ, Е. А. Негин | ||
Начало разработки | 04.03.1966 | 16.08.1976 | 09.1970 | 02.09.1969 |
Начало испытаний | 21.09.1974 | 26.10.1977 | 26.12.1972 | 21.02.1973 |
Дата принятия на вооружение | 11.03.1976 | 17.12.1980 | 30.12.1975 | 30.12.1975 |
Год постановки на боевое дежурство первого комплекса | 30.08.1976 | 06.11.1979 | 06.05.1975 | 25.12.1974 |
Максимальное количество ракет, стоявших на вооружении | 405 | 360 | 150 | 308 |
Год снятия с боевого дежурства последнего комплекса | 1990 | 1995 | ||
Максимальная дальность, км | 5000 | 10000 | 10000+10320 | 11000+16000 |
Стартовая масса, т | 37,0 | 105,6 | 71,1 | 210,0 |
Масса полезной нагрузки, кг | 1740 | 4350 | 2550 | 8800 |
Длина ракеты, м | 16,49 | 24,3 | 21,6 | 36,6 |
Максимальный диаметр, м | 1,79 | 2,5 | 2,25 | 3,0 |
Тип головной части | разделяющаяся головная часть с блоками индивидуального наведения | |||
Количество и мощность боевых блоков, Мт | 1×1; 3×0,15 | 6×0,75 | 4×0,55+0,75 | 8×0,55+0,75 |
Стоимость серийного выстрела, тыс. руб. | 8300 | 4750 | 5630 | 11870 |
Источник информации : Оружие ракетно-ядерного удара. / Под ред. Ю. А. Яшина. — М.: Издательство МГТУ имени Н. Э. Баумана, 2009. — С. 25–26 — 492 с. — Тираж 1 тыс. экз. — ISBN 978-5-7038-3250-9. |
Конструкция
15А15 проектировалась при ограничении на геометрические характеристики её транспортно-пускового контейнера (под существовавшие ШПУ ракет РС-10).
Двухступенчатая ракета МР УР-100 выполнена в двух диаметрах: корпус первой ступени имеет диаметр равный 2,25 , второй — 2,1 м. Ступени соединяются между собой слабоконическим соединительным отсеком, который при разделении ступеней разрушается удлинённым кумулятивным зарядом, опоясывающим соединительный отсек в его средней части.
Конструкция первой ступени
В состав корпуса первой ступени ракеты входят также хвостовой и топливные отсеки. Топливный отсек, состоящий из верхней ёмкости (для окислителя) и нижней (для горючего), — сварной конструкции из алюминиево-магниевого сплава. Ёмкости (баки) окислителя и горючего разделены сферическим промежуточным днищем. Нижнее сферическое днище бака горючего направлено выпуклостью вовнутрь бака, образуя вместе с хвостовым отсеком полость для размещения ДУ ступени.
ДУ первой ступени 15А15 состоит из двух двигателей:
- основного (маршевого) — 15Д168
- рулевого — 15Д167 .
Однокамерный маршевый ЖРД с турбонасосной системой подачи топлива выполнен по замкнутой схеме и закреплён на ступени неподвижно. В состав рулевого двигателя входят четыре поворотные (шарнирно закреплённые) камеры сгорания и один ТНА. В рулевом двигателе реализована открытая схема процесса сгорания компонентов топлива.
Конструкция второй ступени
ДУ второй ступени 15Д169 (РД-862) ракеты 15А15 состоит из однокамерного, неподвижно закреплённого на корпусе ступени ЖРД с турбонасосной подачей компонентов топлива и замкнутой схемой. Этот двигатель имеет ряд оригинальных решений по рабочим процессам: по системе охлаждения камеры сгорания, по процессу газогенерации и другим, которые в конечном счёте позволили получить рекордную величину удельного импульса тяги для ЖРД такого класса (3300 м/с в пустоте). Оригинален и способ создания управляющих сил и моментов при полёте второй ступени: управление по тангажу и рысканью обеспечивается вдувом газа в закритическую часть сопла ЖРД, а по крену — четырьмя небольшими соплами, рабочее тело для которых вырабатывается в газогенераторе ТНА двигателя.
Головная часть
К корпусу второй ступени 15А15 с помощью разрывных болтов крепится разделяющаяся головная часть с четырьмя боевыми блоками, прикрытая обтекателем с изменяемой геометрией. В состав РГЧ входит герметичный приборный отсек, в котором размещается система управления ракетой, и твердотопливная ДУ разведения боевых блоков.
Памятник противоракете
А начиналось всё в 1953 году, когда советское военное руководство получило известие о том, что в США проходят испытания баллистических ракет, способных нести ядерные боеголовки. И уже в августе начальник Генштаба Василий Соколовский и ещё шесть маршалов направили письмо в ЦК КПСС с предложением рассмотреть вопрос о создании средств противоракетной обороны. А осенью собрались учёные — создатели первой отечественной зенитной ракетной системы ПВО. Однако далеко не все отнеслись тогда к маршальской идее с энтузиазмом. Например, один весьма авторитетный академик заявил, что «попасть в космосе пулей по пуле невозможно» и что взяться за решение такой задачи могут только чудаки. Но чудаки нашлись, и в числе первых был молодой доктор технических наук Григорий Кисунько.
Именно коллектив молодых учёных взял на себя смелость обосновать принципы противоракетной обороны, позволяющие находить в космосе мизерную по вселенским масштабам цель, эффективно следить за ней и, наконец, управлять противоракетой. В результате на письме маршалов появилась резолюция: «Проблема сложная, нами дано задание приступить к её изучению».
goskatalog.ru
Три года напряжённейшей работы учёных во главе с Григорием Кисунько дали блестящие результаты.
Три года напряжённейшей работы учёных во главе с Григорием Кисунько дали блестящие результаты. В 1958 году было принято решение о разработке проекта системы ПРО, получившей условное наименование А-35. Через год начались стрельбы противоракетами и был закончен эскизный проект экспериментальной системы ПРО «Системы А», в которую вошли: главный командно-вычислительный пункт, радиолокаторы дальнего обнаружения, радиолокаторы точного наведения противоракет, радиолокационная станция вывода противоракет, стартовая позиция, радиорелейные линии связи.
…В тот мартовский день, когда изуродованные обломки сбитой Р-12 упали на землю, победу праздновали и коллектив Григория Кисунько, и коллектив Петра Грушина, под руководством которого создавалась противоракета. А проходил день, который потом назовут историческим, весьма нервно. С утра проверили технику, дали команду в Капустин Яр на запуск ракеты-мишени, но тут же последовал отбой и запрет на запрет всех средств излучения. От контрразведчиков поступило сообщение: по ближайшей железной дороге в поезде следует иностранец — возможно ведение радиоразведки. Пошли томительные часы ожидания, пока пассажирский состав уносил подальше от полигона проблемного пассажира.
kollektsiya.ru
Баллистическая ракета Р-12.
Сегодня в районе уничтожения Р-12, которая сыграла роль американской баллистической ракеты, в качестве своеобразного памятника высится корпус первой отечественной противоракеты. Это о ней тогдашний советский лидер Никита Хрущёв, любивший употреблять образные выражения, на радостях заявил журналистам: «Наша ракета, можно сказать, попадёт в муху в космосе». Справедливости ради заметим, что американцы смогут повторить такой же результат только через два с половиной десятка лет.
encyclopedia.mil.ru
Съёмка испытательного пуска противоракеты В-1000.
Миномётный старт МР УР-100
Основная статья: Миномётный старт
Для ракеты МР УР-100 одной из первых в СССР была практически реализована «миномётная» схема старта, при которой ДУ первой ступени запускается после выхода ракеты из ТПК под давлением газов, вырабатываемых специальными пороховыми газогенераторами. Для обеспечения миномётного старта на нижнюю часть ракеты устанавливается поддон с опорно-обтюрирующим поясом, а на корпус ракеты — опорные бандажи, которые сбрасываются после выхода ракеты из ТПК. При миномётном старте ракеты газы, вырабатываемые в пороховом аккумуляторе давления, поступают в объём между верхним и нижним днищами поддона. В момент старта принудительно разрывается механическая связь между днищами, и под давлением газов, действующих на верхнее днище поддона, ракета вместе с днищем выбрасывается из ТПК. Нижнее днище поддона с закреплёнными на нём ПАД остаётся в контейнере.
Миномётный старт МР УР-100[ | ]
Основная статья: Миномётный старт
Для ракеты МР УР-100 одной из первых в СССР была практически реализована «миномётная» схема старта, при которой ДУ первой ступени запускается после выхода ракеты из ТПК под давлением газов, вырабатываемых специальными пороховыми газогенераторами. Для обеспечения миномётного старта на нижнюю часть ракеты устанавливается поддон с опорно-обтюрирующим поясом, а на корпус ракеты — опорные бандажи, которые сбрасываются после выхода ракеты из ТПК. При миномётном старте ракеты газы, вырабатываемые в пороховом аккумуляторе давления, поступают в объём между верхним и нижним днищами поддона. В момент старта принудительно разрывается механическая связь между днищами, и под давлением газов, действующих на верхнее днище поддона, ракета вместе с днищем выбрасывается из ТПК. Нижнее днище поддона с закреплёнными на нём ПАД остаётся в контейнере.
Классификация по защите
По защищённости от факторов ядерного взрыва зарубежные специалисты различают пять классов ШПУ:
- Класс низкой защищённости : конструкция способна выдерживать давление ударной волны до 0,7 МПа или до границы светящейся области наземного взрыва в момент её наибольшего развития (ШПУ ракеты Атлас 0,7 МПа (США); ШПУ «Десна-В» для ракет Р-9, «Двина», «Чусовая» для ракет Р-12У и Р-14У, ШПУ для ракет Р-36, УР-100 0,2 МПа (СССР));
- Средний иличетвёртый класс : ударная волна 0,7—2 МПа внутри светящейся полусферы до зоны разлёта грунта из воронки (ШПУ МБР Титан-1, 2 и Минитмен-1);
- Повышенный класс защиты , при котором шахта спасёт ракету в зоне разлёта грунта при давлении ударной волны 2—5 МПа. Также район до 5 МПа является зоной отдельного воздействия ударной волны и огненной полусферы: при соответствующей 4—6 МПа температуре ударной волны 2000—2600 К происходит отрыв и уход вперёд ударного фронта от границы растущей огненной полусферы (ШПУ БРСД S-3 (Франция) 5 МПа, модернизированные ШПУ ракет УР-100 3 МПа, ШПУ ракет Р-36М (СССР) 3—6 МПа);
- Высокий класс : зона навала грунта из воронки толщиной до 2 м и ударной волны 5—10 МПа с одновременным действием ударного фронта и высокотемпературной огненной полусферы (ШПУ Минитмен-2, 3 6—7 МПа, с 1971 г.);
- Сверхвысокий илипервый класс : зона пластических деформаций грунта, навал земли из воронки 5—6 м и ударная волна свыше 10 МПа. Верхний предел защиты для пусковой установки, размещённой в обычном грунте 12—14 МПа, а в скальном грунте до 20—22 МПа или даже до 50 МПа, что уже достаточно близко к границам воронки, но это прочность только самой шахты, а не хрупкого оборудования и ракеты. У таких установок должен быть ряд конструктивных особенностей: отсутствие оголовка; гибкая, пластичная и упругая конструкция шахты, податливая, но неразрушающаяся под действием сейсмовзрывных волн; маленький диаметр верхнего отверстия и защитной крышки для лучшего сопротивления воздушной ударной волне; заполнение крышки жидким гидратом лития для защиты оборудования от проникающей радиации, уровень которой недалеко от центра взрыва весьма велик. Строить такие шахты предполагалось в скальных материковых породах и на маленьких расстояниях друг от друга. Шахты сверхвысокого класса не строились.
- Особый класс защиты : зона прямого попадания расчётного заряда. Пусковая установка в данном случае размещается глубоко под землёй и не имеет прямого выхода на поверхность, а роль защиты пускового оборудования берёт на себя толща грунта. В первой половине 1970-х годов в США рассматривались возможности постройки пусковых установок для ракет «Вулкан» на глубине от 300 до 900 м, способных выдержать прямое попадание боеголовки мощностью от 200 до 1 Мт с последующим «высверливанием» пускового контейнера на поверхность в дно воронки и пуском ракеты. Из-за большого времени пробивки ствола такие пусковые системы небоеспособны в начале боевых действий и могли быть использованы только как оружие возмездия, когда ядерная война уже может закончиться. К тому же незадолго до выхода на поверхность ракета оказывается беззащитной перед повторным ударом. От этой идеи отказались также из-за чрезмерных технических сложностей и высоких затрат в пользу эксплуатации уже построенных многочисленных ШПУ «Мини, а также мобильных систем с ракетами «Трайдент» на подводных лодках.
Модификации
МР УР-100 УТТХ
(индекс ГРАУ —15А16 , код СНВ —РС-16Б , по классификации МО США и НАТОSS−17 mod.3 Spanker ).
Разработка началась 16 августа 1976 года по постановлению правительства № 656—215, одновременно с постановлением № 654—213 об улучшении тактико-технических характеристик (УТТХ) ракетного комплекса Р-36М, практически все работы по этим двум комплексам также велись совместно. Эскизные проекты по ним разработаны в декабре того же года, лётно-конструкторские испытания начаты в октябре 1977 года на НИИП-5. Ракетный комплекс МР УР-100 УТТХ принят на вооружение 17 декабря 1980 года постановлением правительства № 1183—403.
Стационарный ракетный комплекс 15П016
включал в себя 10 межконтинентальных баллистических ракет15А16 , смонтированных в шахтных пусковых установках15П716 (переоборудованные15П715 ракет15А15 ), а также унифицированный командный пункт15В52У высокой защищенности.
За создание ракетных комплексов Р-36М УТТХ (15А18) и МР УР-100 УТТХ (15А16) большая группа работников КБ «Южное» и ПО ЮМЗ удостоена правительственных наград. Комплекс МР УР-100 УТТХ находился на боевом дежурстве до 1994 г.
Начало ракетного соперничества
До конца 1962 года оба ОКБ завершили предварительную проработку своих проектов «легких» ракет, и решение вопроса перешло в политическую плоскость — на уровень ЦК КПСС и советского правительства. Так началось соревнование между двумя знаменитыми сегодня ракетными конструкторскими бюро, обернувшееся в итоге победой Владимира Челомея. Оно было напряженными и драматичным — настолько, что о степени накала страстей можно судить даже по сухим строчкам официальных документов и воспоминаниям непосредственных участников событий.
Учебная ракета УР-100 на ноябрьском параде в Москве.
Стремительное развитие событий началось вскоре после Нового года. 19 января 1963 года зампред Совета министров СССР, председатель комиссии Президиума Совета министров по военно-промышленным вопросам Дмитрий Устинов, министр обороны маршал Советского Союза Родион Малиновский, председатель Госкомитета Совмина по оборонной технике Леонид Смирнов, председатель Госкомитета Совмина по радиоэлектронике Валерий Калмыков, председатель Госкомитета Совмина по химии Виктор Федоров и главком РВСН Сергей Бирюзов направили в ЦК КПСС такое письмо:
«Сов. секретно ЦК КПСС В соответствии с поручением нами, с привлечением ученых и специалистов, рассмотрены предложения главных конструкторов тт. Макеева, Исаева, Янгеля и Решетнева о разработке малогабаритных ракет ампульного типа с автономной системой управления.
Создание такого типа ракет будет дальнейшим шагом в развитии ракетной техники. Конструкция ракет предусматривает возможность нахождения в заправленном состоянии в шахте в течение 10 лет, вместо 30–90 суток существующих ракет, а широкое внедрение автоматизации процессов подготовки и пуска ракет (дистанционное управление) существенно уменьшает количество обслуживающего персонала и обеспечивает сокращение времени готовности от 1 до 5 минут (существующие — 15–30 минут), что значительно повышает боеготовность ракетного вооружения.
Указанные качества по условиям эксплуатации и простота стартов приближают ампульные ракеты к ракетам на твёрдом топливе, а в части энерговооруженности двигателей и габаритов они будут иметь преимущества.
На основании проведенных в СКБ-385, ОКБ-10 и ОКБ-586 Госкомитета по оборонной технике проработок, считаем целесообразным поддержать предложения главных конструкторов о разработке в 1963–64 гг. одного автоматизированного ракетного комплекса с малогабаритной ракетой Р-37 ампульного типа с дальностью стрельбы в диапазоне от 2000 до 12 000 км, вместо предлагаемых двух ракет на дальность 4500 и 12 000 км, но с двумя вариантами боевых головок: на дальность 12 000 км со спецзарядом … в тротиловом эквиваленте и на промежуточную дальность 4500 км со спецзарядом …
Просим одобрить представляемый проект Постановления ЦК КПСС и Совета Министров СССР по данному вопросу».
Фамилии конструкторов, упомянутые в этом письме, требуют пояснения. Виктор Макеев — на тот момент главный конструктор (с 1957 года), а вскоре и руководитель СКБ-385, разрабатывавшего и производившего баллистические ракеты для советских подводных лодок. Алексей Исаев — руководитель ОКБ-2 НИИ-88, разрабатывавшего жидкостные ракетные двигатели и теорию их работы. А Михаил Решетнев — начальник ОКБ-10 (незадолго до этого бывшего филиалом ОКБ-1 Сергея Королева), с ноября 1962 года занимавшегося темой создания ракеты-носителя легкого класса, переданной ему из янгелевского ОКБ-586. Одним словом, все специалисты, упомянутые в этом письме — представители организаций, прямо связанных с Госкомитетом по оборонной технике, прямо подчиненным и непосредственно курировавшимся Дмитрием Устиновым.
Но уже через одиннадцать дней, 30 января по итогам заседания Совета обороны СССР принимается протокол №30, в котором есть такой пункт:
Сравнительная характеристика
Общие сведения и основные тактико-технические характеристики советских баллистических ракет третьего поколения | ||||
---|---|---|---|---|
Наименование ракеты | РСД-10 | УР-100 НУ | МР УР-100 | Р-36М, Р-36М УТТХ |
Конструкторское бюро | МИТ | НПО «Машиностроение» | КБ «Южное» | |
Генеральный конструктор | А. Д. Надирадзе | В. Н. Челомей | В. Ф. Уткин | |
Организация-разработчик ЯБП и главный конструктор | ВНИИЭФ, С. Г. Кочарянц | ВНИИП, О. Н. Тиханэ | ВНИИЭФ, С. Г. Кочарянц | |
Организация-разработчик заряда и главный конструктор | ВНИИЭФ, Б. В. Литвинов[источник?] | ВНИИЭФ, Е. А. Негин | ||
Начало разработки | 04.03.1966 | 16.08.1976 | 09.1970 | 02.09.1969 |
Начало испытаний | 21.09.1974 | 26.10.1977 | 26.12.1972 | 21.02.1973 |
Дата принятия на вооружение | 11.03.1976 | 17.12.1980 | 30.12.1975 | 30.12.1975 |
Год постановки на боевое дежурство первого комплекса | 30.08.1976 | 06.11.1979 | 06.05.1975 | 25.12.1974 |
Максимальное количество ракет, стоявших на вооружении | 405 | 360 | 150 | 308 |
Год снятия с боевого дежурства последнего комплекса | 1990 | 1995 | ||
Максимальная дальность, км | 5000 | 10000 | 10000+10320 | 11000+16000 |
Стартовая масса, т | 37,0 | 105,6 | 71,1 | 210,0 |
Масса полезной нагрузки, кг | 1740 | 4350 | 2550 | 8800 |
Длина ракеты, м | 16,49 | 24,3 | 21,6 | 36,6 |
Максимальный диаметр, м | 1,79 | 2,5 | 2,25 | 3,0 |
Тип головной части | разделяющаяся головная часть с блоками индивидуального наведения | |||
Количество и мощность боевых блоков, Мт | 1×1; 3×0,15 | 6×0,75 | 4×0,55+0,75 | 8×0,55+0,75 |
Стоимость серийного выстрела, тыс. руб. | 8300 | 4750 | 5630 | 11870 |
Источник информации : Оружие ракетно-ядерного удара. / Под ред. Ю. А. Яшина. — М.: Издательство МГТУ имени Н. Э. Баумана, 2009. — С. 25–26 — 492 с. — Тираж 1 тыс. экз. — ISBN 978-5-7038-3250-9. |
Программное обеспечение
Компьютерная программа управления и обработки данных Flow Measuring Device, разработанная в среде LabVIEW 13.0, работает под управлением операционной системы Windows XP.
Для установки и работы программы необходимы следующие системные и аппаратные средства:
— процессор с частотой не ниже 2 ГГц;
— оперативная память не менее 2 Гб;
— операционная система Windows XP;
— драйвер LabVIEW Run-Time Engine версии не ниже 2013.
Программа осуществляет сбор данных, при помощи многофункционального устройства сбора данных NI USB-6009, математическую обработку полученных данных и архивирование результатов измерений. Информационный обмен с барометром БРС-1М и термогигрометром Center-310 осуществляется через интерфейс RS-232, при помощи конвертера USB-2x RS232, подключенного к порту USB.
Метрологически значимая часть ПО СИ содержит специальные средства защиты, исключающие возможность несанкционированной модификации.
Контрольные суммы исполняемого кода метрологически значимых частей ПО, рассчитаны по алгоритму md5.
Идентификационные данные программного обеспечения.
Таблица 1
Идентификационные данные (признаки) | Значение |
Идентификационное наименование ПО | Flow Measuring Device |
Номер версии (идентификационный номер) ПО | не ниже 2.2.5.2 |
Цифровой идентификатор ПО | D20092033E4FB373EAD3E90E9EF8BC3B |
Другие идентификационные данные | — |
ПО имеет уровень защиты «Средний» от непреднамеренных и преднамеренных изменений согласно Р 50.2.077 — 2014.
Технические характеристики
Таблица 2
Наименование параметра | Значение параметра |
Рабочая среда | инертный газ |
Диапазон расходов газа, см3/мин | от 1,0 до 60,0 |
Пределы допускаемой относительной погрешности при вычислении объемного расхода газа, %, при использовании объёма:
— V1 (от 1 до 8 см3/мин) — V2 (от 8 до 60 см3/мин) |
±0,5
±0,2 |
Калиброванный объём V1, см3 | 5,119 |
Пределы допускаемой относительной погрешности объёма V1, % | ±0,25 |
Калиброванный объём V2, см3 | 35,577 |
Пределы допускаемой относительной погрешности объёма V2, % | ±0,1 |
Объём разделительной камеры мерного блока Vp, см3 | 85,8 |
Пределы допускаемой относительной погрешности объёма Vp, % | ±1 |
Пределы допускаемой относительной погрешности измерений интервалов времени между срабатываниями датчиков уровней ФУЖ-0, ФУЖ-1 и ФУЖ-2, % | ±0,02 |
Атмосферное давление, кПа | 84 — 107 |
Диапазон измерений давления рабочей среды, кПа | 60 — 110 |
Пределы допускаемой абсолютной погрешности измерений давления, Па | ±33 |
Диапазон измерений напряжения РРГ, В | от 0 до 10 |
Наименование параметра | Значение параметра |
Пределы допускаемой относительной погрешности измерений напряжения РРГ, % | ±0,3 |
Температура окружающей среды и рабочей среды, °С | 25±10 |
Пределы допускаемой абсолютной погрешности измерений температуры, °С | ±0,7 |
Относительная влажность в воздушной полости РДК , %. | 100 |
Относительная влажность окружающего воздуха, %. | до 80 |
Пределы допускаемой погрешности измерений относительной влажности, % | ± 2,5 |
Напряжение питания сети — переменный ток, В | (220±20), 50 Гц |
Масса, не более, кг | 12 |
Г абаритные размеры, не более, мм | 320x650x410 |
Срок службы, не менее, лет | 10 |
Сравнительная характеристика
Общие сведения и основные тактико-технические характеристики советских баллистических ракет третьего поколения | ||||
---|---|---|---|---|
Наименование ракеты | РСД-10 | УР-100 НУ | МР УР-100 | Р-36М, Р-36М УТТХ |
Конструкторское бюро | МИТ | НПО «Машиностроение» | КБ «Южное» | |
Генеральный конструктор | А. Д. Надирадзе | В. Н. Челомей | В. Ф. Уткин | |
Организация-разработчик ЯБП и главный конструктор | ВНИИЭФ, С. Г. Кочарянц | ВНИИП, О. Н. Тиханэ | ВНИИЭФ, С. Г. Кочарянц | |
Организация-разработчик заряда и главный конструктор | ВНИИЭФ, Б. В. Литвинов[источник?] | ВНИИЭФ, Е. А. Негин | ||
Начало разработки | 04.03.1966 | 16.08.1976 | 09.1970 | 02.09.1969 |
Начало испытаний | 21.09.1974 | 26.10.1977 | 26.12.1972 | 21.02.1973 |
Дата принятия на вооружение | 11.03.1976 | 17.12.1980 | 30.12.1975 | 30.12.1975 |
Год постановки на боевое дежурство первого комплекса | 30.08.1976 | 06.11.1979 | 06.05.1975 | 25.12.1974 |
Максимальное количество ракет, стоявших на вооружении | 405 | 360 | 150 | 308 |
Год снятия с боевого дежурства последнего комплекса | 1990 | 1995 | ||
Максимальная дальность, км | 5000 | 10000 | 10000+10320 | 11000+16000 |
Стартовая масса, т | 37,0 | 105,6 | 71,1 | 210,0 |
Масса полезной нагрузки, кг | 1740 | 4350 | 2550 | 8800 |
Длина ракеты, м | 16,49 | 24,3 | 21,6 | 36,6 |
Максимальный диаметр, м | 1,79 | 2,5 | 2,25 | 3,0 |
Тип головной части | разделяющаяся головная часть с блоками индивидуального наведения | |||
Количество и мощность боевых блоков, Мт | 1×1; 3×0,15 | 6×0,75 | 4×0,55+0,75 | 8×0,55+0,75 |
Стоимость серийного выстрела, тыс. руб. | 8300 | 4750 | 5630 | 11870 |
Источник информации : Оружие ракетно-ядерного удара. / Под ред. Ю. А. Яшина. — М.: Издательство МГТУ имени Н. Э. Баумана, 2009. — С. 25–26 — 492 с. — Тираж 1 тыс. экз. — ISBN 978-5-7038-3250-9. |