Твердотопливный ракетный ускоритель

Принцип действия турбореактивного двигателя

Академическое понятие ТРД выглядит так:Турбореактивный двигатель — газотурбинный двигатель, в котором химическая энергия топлива преобразуется в кинетическую энергию струй газов, вытекающих из реактивного сопла.

Поясним некоторые моменты: газотурбинный двигатель — это основа любого ТРД, рассматривая далее виды турбореактивных двигателей, данный факт будет хорошо прослеживаться. Под химической энергией имеется в виду высвобождение большого количества теплоты за счет сгорания топлива в присутствии кислорода. Что же касается сопла, то струя газа не всегда имеет максимальную кинетическую энергию при выходе из него, почему — рассмотрим далее.

Основной принцип работы любого газотурбинного двигателя — тепловое расширение воздуха за счет сгорания топлива, и как следствие образование реактивной струи — быстродвижущегося потока газов.

Как это работает

Турбина — это колесо с лопатками (своего рода лопастями), направленных к потоку газов под некоторым углом. Соответственно чем быстрее движется этот поток, тем большее усилие воздействует на лопатки, заставляя их поворачивать турбинное колесо. Надо сказать, что справедливо и обратное утверждение: если турбинное колесо вращается не за счет реактивной струи, то лопатки начинают увлекать за особой воздушный поток, словно вентилятор. Кстати лопасти винта самолета, мельницы или ветрогенератора используют похожий принцип, что и турбинное колесо, только в последнем случае давление, температура и скорость потока куда выше.

Обратите внимание на иллюстрацию работы классической турбореактивной установки, или иначе говоря газотурбинной установки. Мы видим общий вал, на котором расположены кольца (колеса) с лопатками (их все можно также назвать турбинными кольцами (колесами), так как они ни чем не отличаются)

С левой стороны изображена «холодная» а справа «горячая» части турбины. Давайте рассмотрим рабочий процесс данного двигателя, слева на право, с самого момента запуска:

  • Изначально окружающий воздух через воздухозаборник контактирует с компрессором низкого давления. Специальный турбостартер (в случае больших двигателей) за счет создания высокого давления воздуха, подаваемого на лопатки одного из турбинных колец, раскручивает вал турбины, приводя в движение компрессор низкого и высокого давления, а также турбинные колеса.
  • Лопатки компрессора низкого давления начинают «проталкивать» воздушный поток к лопаткам компрессора более высокого давления, которое в свою очередь перемещает воздух к следующему компрессору, и с каждым последующим переходом давление воздуха продолжает расти, а также растет и скорость потока. Проходя через лопатки последнего компрессора поток оказывается в просторной камере сгорания, в которой расположены топливные форсунки и свечи для поджига топлива, словно в автомобиле, только гораздо мощнее.
  • Как только давление и скорость потока воздуха достигнут необходимых показателей, через форсунки начинает подаваться жидкий керосин, либо любой горючий газ, а свечи зажигания дают искру. После воспламенения топлива в камере сгорания резко возрастает давление, так как весь объем газовой смеси (включая воздушную смесь), вынужден увеличиться в несколько сотен раз за счет температурного расширения. В этот момент турбостартер (или электростартер), раскручивающий вал турбины, отключается.
  • Весь горячий газ из камеры сгорания под огромным давлением и скоростью встречает на своем пути главную часть двигателя — турбинные колеса, которые вращают вал всей турбины (либо напрямую, либо через редуктор). За счет того, что турбинные колеса изначально вращаются гораздо медленнее, не соответствуя скорости только что разогретого в камере сгорания газа, поток начинает раскручивать турбину, теряя при этом часть кинетической энергии. Таким образом турбина работает самостоятельно, без участия стартера.
  • Пройдя последнее турбинное колесо поток газа вырывается наружу через специально созданное сужение, называемое соплом. За счет сужения скорость потока газа увеличивается еще немного, что создаст большую реактивную силу.

Турбореактивный двигатель

Твердотопливный ракетный двигатель — что это такое

Твердото́пливный раке́тный дви́гатель (или ракетный двигатель на твёрдом топливе, РДТТ) — ракетный двигатель, который использует в качестве топлива твёрдое горючее и окислитель.

Как правило такой двигатель применяется в ракетах (твёрдотопливных ракетах).

Самые ранние сведения об использовании твердотопливных ракет (китайских пороховых ракет) относятся к XIII веку. Вплоть до XX века все ракеты использовали ту или иную форму твёрдого топлива, как правило на основе дымного пороха. В период между первой и второй мировыми войнами начинается принятие на вооружение лёгких твердотопливных ракет на основе различного нитроцеллюлозного топлива. После Второй Мировой войны началось бурное развитие ракетной техники как военного так и космического назначения.

Достоинствами твердотопливных ракет являются: относительная простота, отсутствие проблемы возможных утечек токсичного топлива, низкая пожароопасность, возможность долговременного хранения, надёжность.

Недостатками таких двигателей являются невысокий удельный импульс и относительные сложности с управлением тягой двигателя (дросселированием), его остановкой (отсечка тяги) и повторным запуском, по сравнению с ЖРД; как правило, больший уровень вибраций при работе, большое количество агрессивных веществ в выхлопе наиболее распространённых видов топлива с перхлоратом аммония.

Космонавтика Править

Редко используются в советской и российской космонавтике (например, Старт (ракета-носитель)), однако широко применялись и применяются в ракетной технике других стран, например в США. В основном это элементы первой ступени (боковые ускорители):

  • Боковой ускоритель МТКК Спейс шаттл и Space Launch System.
  • Вторая ступень Наро-1 (Республика Корея), Антарес (США).
  • Семейство твердотопливных ступеней Castor (англ.) русск. .
  • Японская ракета SS-520.

В моделизме Править

В ракетомоделировании используется 2 типа двигателей на твёрдом топливе. Первые — на основе дымного пороха (в Америке такие двигатели имеются в свободной продаже). Но обычно используют расплав или смесь калийной селитры (или реже натриевой селитры) и углеводов (сахар, сорбит и декстроза) — это т. н. «карамель», она изготовляется самостоятельно. Ракетные двигатели обычно имеют сопло, но иногда делают и бессопловые двигатели. Их обычно изготовляют из картонных гильз для охотничьих ружей, в качестве сопла используется отверстие для капсюля.

В настоящее время существуют программы для расчёта характеристик таких двигателей. Наиболее популярная — «SRM» авторства Ричарда Накки (существует и русскоязычная версия).

  • Гомогенные топлива. Представляют собой твёрдые растворы (обычно — нитроцеллюлозы) в нелетучем растворителе (обычно в нитроглицерине). Применяются в небольших ракетах.
  • Смесевые топлива. Это смесь твёрдых окислителя и горючего. Наиболее значимы:
    • Дымный порох. Исторически первое ракетное топливо. Состав: селитра, древесный уголь и сера.
    • Смесевые топлива на основе перхлората аммония (окислитель) и полимерного горючего. Наиболее широко применяемое топливо для тяжёлых ракет военного и космического назначения.
    • В ракетомоделизме получило широкое распространение самодельное смесевое топливо на основе нитрата калия и органических связующих, доступных в быту (сорбит, сахар и тому подобных).
  • Известны ракетные двигатели, где горючее является твёрдым топливом, а окислитель жидким веществом и подаётся в камеру сгорания насосами по трубопроводам. Достоинствами такого топлива являются возможность управления тягой двигателя, достижение более высоких температур сгорания за счёт охлаждения камеры жидким окислителем. Такие ракетные двигатели являются промежуточными между ЖРД и РДТТ .

Топливо РДТТ американских межконтинентальных ракет состояло из смеси на основе перхлората аммония в качестве окислителя и горючего полиуретана с алюминием (первая ступень), с присадками (связующего НТРВ (англ. Hydroxyl Terminated Poly Butadien — полибутадиена с концевой гидроксильной группой), улучшающими стабильность скорости горения, формование и хранения заряда и смесью на основе перхлората аммония в качестве окислителя и горючего полиуретана в смеси с сополимером полибутадиена и акриловой кислоты (вторая ступень).

голоса

Рейтинг статьи

Геометрия порошкового блока

Сгорает поверхность порохового блока, открытая в камере сгорания . Следовательно, геометрия канала, который проходит через блок, играет важную роль в мощности двигателя малой тяги. По мере развития горения форма канала изменяется, изменяя площадь поверхности блока пороха, подверженного горению. Объем генерируемого газа (и, следовательно, давление) зависит от мгновенной площади поверхности (м²) и скорости сгорания (м / с):
Вs{\ displaystyle A_ {s}} бр{\ displaystyle b_ {r}}

м˙знак равноρ⋅Вs⋅бр{\ displaystyle {\ dot {m}} = \ rho \ cdot A_ {s} \ cdot b_ {r}}

Форма сечения канала и его центрирование индивидуальны для каждого двигателя. Для одного и того же подруливающего устройства форма секции может также отличаться в продольном направлении (таким образом, подруливающие устройства Ariane 5 имеют звездообразный канал в верхнем сегменте и круглый канал для двух других сегментов). Наиболее часто используемые геометрии зависят от желаемой кривой тяги:

  • Круговой канал: сначала увеличивается, а затем уменьшается кривая тяги.
  • Сгорание в конце блока: порошок горит в конце цилиндра, обеспечивая очень долгое время сгорания, но с термическими напряжениями, с которыми трудно справиться, и смещением центра тяжести.
  • С-образный паз: канал имеет большие срезанные углы вдоль своей оси, что позволяет создавать длительную уменьшающуюся тягу, но с термическими напряжениями и асимметрией центра тяжести.
  • Moon Burner: эксцентрический канал производит продолжительное горение, сначала увеличивающееся, а затем уменьшающееся, что представляет собой небольшую асимметрию центра тяжести.
  • Финоцил: канал имеет форму звезды, как правило, с пятью или шестью ветвями, что позволяет создавать практически постоянную тягу со скоростью сгорания немного быстрее, чем в случае цилиндрического канала, из-за более быстрого увеличения сгорания. поверхность.

Применение

Космонавтика

Многокамерный ракетный двигатель твёрдого топлива для катапультирования кресла с «Бурана» (слева)

Редко используются в советской и российской космонавтике (например, Старт (ракета-носитель)), однако широко применялись и применяются в ракетной технике других стран, например в США. В основном это элементы первой ступени (боковые ускорители):

  • Боковой ускоритель МТКК Спейс шаттл и Space Launch System.
  • Вторая ступень Наро-1 (Республика Корея), Антарес (США).
  • Семейство твердотопливных ступеней Castor (англ.)русск..
  • Японская ракета SS-520.

Боевые ракеты

Баллистические ракеты подводных лодок
  • UGM-27 «Поларис» (1960)
  • UGM-73 «Посейдон» (1970)
  • UGM-96 «Трайдент» (1979)
  • M1 (1972)
  • M20 (1976)
  • M45 (1996)
  • M51
  • Р-39 (1983)
  • Р-30 «Булава»
Межконтинентальные баллистические ракеты
  • LGM-30 «Минитмен» (1962)
  • MX «Пискипер» (1986)
  • РТ-23 УТТХ «Молодец»(1987)
  • РТ-2ПМ «Тополь» (1982)
  • РТ-2ПМ2 «Тополь-М» (1998)
  • РС-24 «Ярс» (2009)
  • РС-26 «Рубеж» (2017)
Противоракеты системы ПВО

LIM-49A «Спартен»

ПЗРК

Игла

В моделизме

В ракетомоделировании используется 2 типа двигателей на твёрдом топливе. Первые — на основе дымного пороха (в Америке такие двигатели имеются в свободной продаже). Но обычно используют расплав или смесь калийной селитры (или реже натриевой селитры) и углеводов (сахар, сорбит и декстроза) — это т. н. «карамель», она изготовляется самостоятельно. Ракетные двигатели обычно имеют сопло, но иногда делают и бессопловые двигатели. Их обычно изготовляют из картонных гильз для охотничьих ружей, в качестве сопла используется отверстие для капсюля.

Виды газотурбинных двигателей

По своему строению данные агрегаты разделяются на четыре типа. Первый из них это турбореактивный, его в большинстве своем устанавливают на военные самолеты, обладающие высокой скоростью. Принцип работы заключается в том, что газы, выходящие на большой скорости из мотора, через сопло толкают самолет вперед.

Другой тип — турбиновинтовой. Его устройство от первого отличается тем, что он имеет еще одну секцию турбины. Данная турбина составлена из ряда лопаток, которые забирают остаток энергии у газов, прошедших через турбину компрессора и благодаря этому осуществляют вращение воздушного винта.

Винт может располагаться как в задней части агрегата, так и в передней. Отходящие газы выводятся через выхлопные трубы. Такой реактивный аппарат оснащается на самолетах, летающих на низкой скорости и на малой высоте.

Третий тип — турбовентиляторный, который похож по своей конструкции на предыдущий двигатель, но у него 2-я турбинная секция забирает энергию у газов не полностью и поэтому подобные движки также обладают выхлопными трубами.

Главная особенность такого двигателя в том, что его вентилятор, закрытый в кожух, работает от турбины низкого давления. Поэтому движок называют еще 2-х контурным, поскольку воздушный поток проходит через агрегат, являющейся внутренним контуром и через свой внешний контур, необходимый только лишь для направления потока воздуха, который толкает мотор вперед.

Самые новейшие самолеты оборудованы именно турбовентиляторными двигателями. Они эффективно функционируют на большой высоте, а также отличаются экономичностью.

Последний тип — турбовальный. Схема и устройство газотурбинного двигателя этого типа почти такая же, как и у прошлого движка, но от его вала, который присоединен к турбине, приводится в действие практически все. Чаще всего его устанавливают в вертолеты, и даже на современные танки.

Детонационный двигатель

Между тем в России специализированная лаборатория «Детонационные ЖРД» научно-производственного объединения «Энергомаш» занимается разработкой спинового детонационного жидкостного ракетного двигателя, работающего на топливной паре кислород-керосин. О первом успешном испытании такой силовой установки было объявлено 26 августа текущего года. Следует отметить, что это первый в мире спиновый детонационный двигатель, разрабатываемый специально для использования на ракетах-носителях. Аналогичную силовую установку сегодня создают и в США, однако ее планируется использовать в качестве более экономичной и эффективной замены газотурбинных двигателей на кораблях ВМС.

Изучение принципов работы и разработка детонационных двигателей ведется в некоторых странах мира уже больше 70 лет. Впервые ими занялись еще в Германии в 1940-е годы. Правда, тогда работающего прототипа детонационного двигателя исследователям создать не удалось, но были разработаны и серийно выпускались пульсирующие воздушно-реактивные двигатели. Они ставились на ракеты «Фау-1». В силовых установках таких ракет топливо подавалось в камеру сгорания небольшими порциями через равные промежутки времени. При этом распространение процесса горения по топливу происходило на скорости, меньшей скорости звука. Такое сгорание называется дефлаграцией, оно лежит в основе работы всех обычных двигателей внутреннего сгорания.

В детонационном двигателе фронт горения распространяется по топливной смеси быстрее скорости звука. Такой процесс горения называется детонацией. Детонационные двигатели сегодня делятся на два типа: импульсные и спиновые. Последние иногда называют ротационными. Принцип работы импульсных двигателей схож с таковым у пульсирующих воздушно-реактивных двигателей: топливо и окислитель подаются в камеру сгорания с высокой частотой через равные промежутки времени. Основное отличие заключается в детонационном горении топливной смеси в камере сгорания. Благодаря детонации топливо сгорает полнее, выделяя большее количество энергии, чем при дефлаграции.

В спиновых детонационных двигателях используется кольцевая камера сгорания. В ней топливная смесь подается последовательно через радиально расположенные клапаны. В таких силовых установках детонация не затухает, пока подаются топливо и окислитель. Во время работы двигателя детонационная волна «обегает» кольцевую камеру сгорания, причем топливная смесь за ней успевает обновиться. При этом, если в импульсном двигателе в камеру сгорания следует подавать предварительно подготовленную смесь топлива и окислителя, то в спиновом двигателе этого делать не нужно — фронт высокого давления, движущийся перед детонационной волной, вполне эффективно смешивает необходимые компоненты. Ротационный двигатель впервые начали изучать в СССР в 1950-х годах.

Благодаря своей экономичности при высокой выдаваемой мощности спиновые детонационные двигатели в ракетах-носителях позволят существенно сократить объемы топлива и окислителя, необходимые для вывода полезного груза на орбиту. На практике (и это свойственно всем уже перечисленным проектам), уменьшение массы двигателя (а силовая установка будет весить меньше обычной ракетной), топлива и окислителя позволит либо увеличить забрасываемый вес носителя при сохранении его габаритов, либо оставить забрасываемый вес неизменным при уменьшении габаритов ракеты. Забрасываемый вес ракеты-носителя — это масса последней ступени, ее топлива и полезного груза.

В перспективе гонку на рынке космических запусков выиграет тот, кто сможет как можно дешевле выводить на орбиту как можно больше грузов. Некоторые компании полагают, что благодаря использованию новых технологий стоимость вывода грузов на низкую орбиту можно будет опустить ниже тысячи долларов за килограмм и ниже десяти тысяч за килограмм при запуске на геопереходную орбиту. Правда, когда именно такое будет возможно, пока неясно. По самым смелым оценкам, новые ракетные двигатели будут использоваться на ракетах-носителях с середины 2020-х годов.

Виды турбореактивных двигателей в авиации

Турбореактивные установки используются сейчас во многих областях техники, сохраняя единый принцип действия. В основе различий в типах ТРД лежит использование кинетической энергии газа, оставшейся после прохождения турбинных колес. Ее можно использовать как напрямую — то есть как реактивную струю, а можно направить еще на ряд турбинных колес, только уже вращающих другие валы. С каждым таким колесом струя газа будет терять энергию, и последующее использование ее реактивных качеств будет уже неоправданным, но как оказалось большим самолетам лучше всего летать не за счет непосредственно реактивной струи газа из камеры сгорания, а за счет большого винта, либо за счет вентилятора огромного диаметра.

Такое раздельное использование газовой струи ввело в обиход двигателестроителей такое понятие как «двухконтурность» турбореактивных двигателей. Контур — это один путь для воздушной струи через двигатель, соответственно один контур — это всегда главная газовая турбина, а второй контур это вентилятор огромного диаметра, создающий гораздо более массивный воздушный поток. Если объем одного контура превышает объем другого, речь идет о большой или малой степени двухконтурности.

Турбовинтовой двигатель

Начнем с двигателей с самым большим показателем степени двухконтурности (это условное выражение, так как подобные двигатели не принято называть двухконтурными) — Турбовинтовых ТРД.

Во главе угла газовая турбина, есть и компрессор низкого и высокого давления, и воздухозаборник, правда не прямоточный, а также камера сгорания и турбина отбора мощности, так сказать, да, чуть не забыл про сопло. Хотя от него в данном двигателе толку никакого нет. Струя газа после камеры сгорания тратит 5% своей энергии на вращение компрессоров, и 90% на вращение турбинного колеса, установленного на валу воздушного винта, через планетарный редуктор для увеличения мощности, за счет снижения оборотов. Таким образом реактивная струя вращает массивный винт, который действительно очень большой. Самолеты на поршневых двигателях не могли о таких винтах даже мечтать.

Сейчас большая авиация уже отказалась от таких двигателей в пользу турбовентиляторных ТРД, однако на малой авиации турбовиновые машины не теряют популярность. Даже на небольшие самолеты есть возможность установки турбовинтовых моторов, так как они гораздо надежней поршневых двигателей внутреннего сгорания, однако производство ТРД всегда обходится дороже, так как там важна точность обработки материалов и их качество, ведь работать предстоит при высоких давлениях, скоростях и температурах.

Турбовентиляторный двигатель

Вот здесь можно разгуляться по степеням двухконтурности, каких соотношений только в мире не найти. В свое время инженеры заметили, что вентилятор, состоящий из большого количества лопастей (как большой компрессор ТРД), способен создавать более быстрый и стабильный поток воздуха, нежели винт, но и это не все прелести. Многие из нас, кто родом из СССР, наверняка помнят, что было, когда где-то в небе пролетал самолет

Неважно какая у него была высота, хоть все 11 км, всегда у земли был слышен грохот реактивных машин или винтов. Жизнь возле аэропортов вообще представляла из себя сущий кошмар, с трясущимися стенами

Но вот сейчас все это в прошлом. Разве что военные учения с их турбовинтовыми бомбардировщиками, напомнят о прошлых временах в авиации.

Так вот турбовентиляторный ТРД подарил нам тишину. Их гигантский размер и высокая мощность не требуют высоких оборотов, а значит не производят сильный шум.

Как можно видеть из схемы, основное отличие от турбовинтового двигателя заключается в том, что отбор реактивной мощности идет на вращение вентилятора, а не винта. Турбовентиляторный двигатель создает движущую реактивную струю на 70% за счет вентилятора, 30% выходящих из сопла газов.

Турбовентиляторный двигатель

Конструкция ракеты

Конструкции большинства ракет в основном схожи между собой. Они удовлетворяют в большинстве случаев, так скажем, идеальной «эмпирической ракете»:

  • длина ракеты полная: L= 15~25 D

  • длина головного обтекателя: Ln = 2.5~3.5*D

  • размах стабилизатора: S = 1~2*D

  • общая площадь стабилизаторов: F= 0,7~0,8*A,где A=L*D — площадь продольного сечения корпуса,

  • запас устойчивости: k = 1,5~3*D

«Эмпирическая ракета» Rocki

В зависимости от поставленных целей и используемых компонентов параметры ракеты могут варьироваться, конечно же, но почти всегда укладываются в вышеобозначенные границы. В моём случае размер ракеты будет определяться исходя из размеров двигателя, парашюта и электроники. Чтобы уместить всё в корпусе ракеты я использую трубу диаметром в 50мм. Трубу можно сделать, в идеале, из стеклопластика, а можно взять ПП канализационную трубу — она сравнительно прочная и лёгкая. Головной обтекатель также делается из этой же трубы — вырезается «корона» (длиной в 2-3 диаметра ракеты) и склеивается вместе, образуя параболическую форму. Хотя, конечно есть и другие варианты — выточить обтекатель из деревянной заготовки на токарном станке или распечатать его на 3D-принтере. Обтекатель должен быть максимально правильной формы, гладким — это необходимо для снижения аэродинамического сопротивления ракеты и снижения вредных срывных течений в носовой части ракеты. 

Стабилизаторы стоит изготавливать из достаточно лёгкого, но прочного материала. Например пластика, фанеры или бальзы. Форма и размер стабилизаторов зависят от размеров ракеты, а если быть точным, то от расположения центра тяжести ракеты и центра давления.

Модель устойчивости ракетыПроверка стабильности ракеты — просто раскручиваем ракету над головой

Центр тяжести ракеты определяется простым методом «взвешивания». Положив ракету на руку, нужно найти точку, в которой достигается равновесие.

Центр давления рассчитывается используя метод определения центра давления по Борроумену. К слову сказать, есть и другой, хотя и куда менее точный способ определения центра давления — метод аэродинамической проекции. В любом случае, какой бы мы метод не использовали, чтобы ракета была устойчивой, расстояние между центром тяжести и центром давления должно составлять хотя бы 1,5 диаметра самой ракеты. Эта, так называемая «устойчивость в диаметрах» может быть и выше, хотя устойчивость больше 2-2,5 диаметров не рекомендуется, так как в этом случае стабилизаторы будут больше, а значит тяжелее. Кроме того, большая площадь стабилизаторов приведёт к тому, что ракета будет испытывать большие боковые нагрузки, что приведёт к тому, что она будет, как флюгер разворачиваться по ветру и лететь не вверх, а вбок; в худшем случае — флаттер приведёт к разрушению ракеты в полёте. Подробно об устойчивости можно почитать здесь.

Интерфейс Rocki-design и модель будущей ракеты

Есть готовые программные решения для расчёта параметров ракеты. Я использую Rocki-design, но чаще, тем более в англоязычном мире используют OpenRocket. Подобрав нужный размер стабилизаторов, вырезаем их из заготовки и прикручиваем винтами к корпусу, используя металлические уголки. Крепление должно быть жёстким. Для лёгких ракет сгодится и просто приклеивание, но для тяжелой ракеты лучше перестраховаться.

Перспективы развития ракетных двигателей

Помимо привычных для нас химических ракетных двигателей, сжигающих топливо с целью производства тяги, есть многие другие способы ее получить. Любая система, способная толкать массу. Если вы планируете ускорить бейсбольный мячик до огромной скорости, вам требуется жизнеспособный ракетный двигатель. При таком подходе единственная проблема – это выхлоп, который тянется через пространство. Именно столь небольшая проблема приводит к тому, что инженеры предпочитают газы горящим продуктам.

Большинство ракетных двигателей имеют крайне малые двигатели. Например, двигатели ориентации на спутниках не создают большую тягу. Иногда на них почти не применяется топливо – под давлением газообразный азот через сопло выбрасывается из резервуара.

Новые конструкции должны ускорить атомные частицы или ионы до высокой скорости, чтобы тяга стала максимально эффективной. Но пока будем делать электромагнитные двигатели и ждать того, что там еще придумает Элон Маск со своим SpaceX.

Система спасения

Система спасения — одна из самых сложных в ракете. Она включает в себя парашют, крепление к корпусу, а также механизм выброса парашюта. Она в обязательном порядке порядке должна быть проверена не один раз на земле. Я использую пиротехнический вариант выброса парашюта (мортирка), инициируемый бортовым компьютером. Хотя встречаются и другие решения — механические и пневматические, или вовсе инерционные. Пиротехническая система одна из самых популярных и простых, содержит минимум компонентов.

Заготовка для мортирки

Сам парашют — это купол диаметром в 70 сантиметров, сшитый из прочной и лёгкой ткани (рип-стоп). Можно рассчитать точно необходимую площадь парашюта для плавного спуска в зависимости от массы ракеты. Хотя, из практики, парашют лучше делать меньше диаметром — это увеличит скорость падения ракеты, конечно, но ракету будет меньше сдувать ветром, и поэтому меньше шансов намотать километры от места запуска до места падения.

Вырезаем парашют

Не менее важно обеспечить крепление системы спасения ракеты с корпусом. Обычно в корпус устанавливаются силовые болты, к которым привязывается силовой трос (фал), соединяющийся со стропами парашюта

Фал пропускается через пыж — лёгкий цилиндр, который впритирку устанавливается ко внутреннему диаметру ракеты — он необходим для выброса парашюта, работая как поршень, приводимый в движение газами из мортирки.

Конструкция крепления системы спасения

Головной обтекатель также подвязывается к фалу.

В сборе внутренние компоненты ракеты ракеты занимают весь внутренний объем.

Модель ракеты со всеми компонентами

Принцип работы

Компрессор втягивает воздух, сжимает его и направляет в камеру сгорания. В ней сжатый воздух смешивается с топливом, которое воспламеняется. Горячие газы, образовавшиеся в результате горения, расширяются, заставляя вращаться турбину, которая расположена на одном валу с компрессором. Остальная часть энергии перемещается в сужающееся сопло. В результате направленного истечения газа из сопла на двигатель действует реактивная тяга. При горении топлива воздух, служащий рабочим телом, нагревается до 1500-2000 градусов Цельсия.

В полёте поток воздуха тормозится во входном устройстве перед компрессором, в результате чего его температура и давление повышается. На земле во входном устройстве воздух ускоряется, его температура и давление снижаются.

Проходя через компрессор, воздух сжимается, его давление повышается в 10—45 раз, возрастает его температура. Компрессоры газотурбинных двигателей делятся на осевые и центробежные. В наши дни в двигателях наиболее распространены многоступенчатые осевые компрессоры. Центробежные компрессоры, как правило, применяются в малогабаритных силовых установках.

Далее сжатый воздух попадает в камеру сгорания, в так называемые жаровые трубы, либо в кольцевую камеру сгорания, которая не состоит из отдельных труб, а является цельным кольцевым элементом. В наши дни кольцевые камеры сгорания являются наиболее распространёнными. Трубчатые камеры сгорания используются гораздо реже, в основном на военных самолётах. Воздух на входе в камеру сгорания разделяется на первичный, вторичный и третичный. Первичный воздух поступает в камеру сгорания через специальное окно в передней части, по центру которого расположен фланец крепления форсунки, и участвует непосредственно в окислении (сгорании) топлива (формировании топливо-воздушной смеси). Вторичный воздух поступает в камеру сгорания сквозь отверстия в стенках жаровой трубы, охлаждая, придавая форму факелу и не участвуя в горении. Третичный воздух подаётся в камеру сгорания уже на выходе из неё, для выравнивания поля температур. При работе двигателя в передней части жаровой трубы всегда вращается вихрь раскалённого газа (что обусловлено специальной формой передней части жаровой трубы), постоянно поджигающего формируемую топливовоздушную смесь, происходит сгорание топлива (керосина, газа), поступающего через форсунки в парообразном состоянии.

Газовоздушная смесь расширяется и часть её энергии преобразуется в турбине через рабочие лопатки в механическую энергию вращения основного вала. Эта энергия расходуется, в первую очередь, на работу компрессора, а также используется для привода агрегатов двигателя (топливных подкачивающих насосов, масляных насосов и т. п.) и привода электрогенераторов, обеспечивающих энергией различные бортовые системы.

Основная часть энергии расширяющейся газовоздушной смеси идёт на ускорение газового потока в сопле и создание реактивной тяги.

Чем выше температура сгорания, тем выше КПД двигателя. Для предупреждения разрушения деталей двигателя для их изготовления используют жаропрочные сплавы и термобарьерные покрытия. А также применяется система охлаждения воздухом, отбираемым от средних ступеней компрессора.

Кожух

Кожух может быть изготовлен из различных материалов. Картон используется для небольших моделей двигателей с черным порохом , в то время как алюминий используется для более крупных любительских двигателей на композитном топливе. Сталь использовалась для ускорителей космических кораблей . Графитовые эпоксидные кожухи с намотанной нитью используются для высокопроизводительных двигателей.

Корпус должен быть спроектирован таким образом, чтобы выдерживать давление и возникающие в результате нагрузки ракетного двигателя, возможно, при повышенной температуре. По конструкции кожух считается сосудом под давлением .

Чтобы защитить корпус от агрессивных горячих газов, на внутренней стороне корпуса часто используется временная термоизоляция, которая удаляется, чтобы продлить срок службы корпуса двигателя.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector