Жёлтый карлик

Когда стали известны белые карлики?

Несмотря на то, что первым белым карликом, открытым астрофизиками, считается Сириус В, имеются сторонники версии более раннего знакомства научного сообщества со звездными объектами этого класса. Еще в 1785 году астроном Гершель впервые включил в звездный каталог тройную звездную систему в созвездии Эридана, разделив все звезды по отдельности. Только спустя 125 лет астрономы выявили аномально низкую светимость 40 Эридана В при высокой цветовой температуре, что послужило поводом для выделения таких объектов в отдельный класс.

40 Эридан

Объект обладал слабым блеском, соответствующим звездной величине +9,52m. Белый карлик обладал массой ½ солнечной и имел диаметр меньше земного. Эти параметры противоречили теории внутреннего строения звезд, где светимость, радиус и температура поверхности звезды являлись ключевыми параметрами определения класса звезды. Маленький диаметр, низкая светимость с точки зрения физических процессов не соответствовали высокой цветовой температуре. Такое несоответствие вызывало много вопросов.

Сириус

Сверхновая звезда

Вспышка сверхновой

Второе название данного явления называется взрывом
сверхновой. Оно представляет собой конец эволюции некоторых звезд.  В результате вспышки увеличивается яркость
светила на 4—8 порядков, а потом она медленно затухает. Стоит отметить, что
химическая эволюция Галактики протекает благодаря тем самым взрывам сверхновой,
во время которых происходит выброс тяжелых элементов. Из этих остатков
формируются протозвезды с планетарными туманностями, а из этих туманностей — новые
звезды и планеты. По некоторым сведениям, так и произошло формирование Земли.

Астрономы отмечают, что не заметить взрыв сверхновой просто
невозможно. Вспышка настолько сильна, что затмевает сияние других звезд на
небе.

В ядре звезды происходит термоядерная реакция: водород
превращается в гелий и более тяжелые элементы с выделением большого количества
энергии. Когда водород в центре заканчивается, к нему начинают обрушиваться
верхние слои гелия. Затем вещество взрывается и сжимает ядро, унося при этом
верхние слои ударной волной. Это и есть взрыв.

Ученые считают, что в течение нескольких тысячелетий
произойдет вспышка сверхновой. В список вошли такие звезды, как IK Пегаса, Антарес
и Бетельгейзе.

Спектральная классификация

Множество Белых карликов в шаровом скоплении М4, снимок Хаббла

Они выделены в особый спектральный класс D (от английского Dwarfs – карлики, гномы). Но в 1983 году Эдвард Сион предложил более точную классификацию, которая учитывает различия их спектров, а именно: D (подкласс) (спектральная особенность) (температурный индекс).

Существуют следующие подклассы спектров DA, DB, DC, DO, DZ и DQ, которые уточняют наличие или отсутствие линий водорода, гелия, углерода и металлов. А спектральные особенности P, H, V и X уточняют наличие или отсутствие поляризации, магнитного поля при отсутствии поляризации, переменность, пекулярность или неклассифицируемость белых карликов.

Эволюция белых карликов

Вне главной последовательности происходит процесс угасания звезды. Под воздействием сил гравитации нагретый газ красных гигантов и сверхгигантов разлетается по Вселенной, образуя молодую планетарную туманность. Через сотни тысяч лет туманность рассеивается, а на ее месте остается вырожденное ядро красного гиганта белого цвета. Температуры такого объекта достаточно высоки от 90000 К, оценивая по линии поглощения спектра и до 130000 К, когда оценка осуществляется в пределах рентгеновского спектра. Однако ввиду небольших размеров, остывание небесного светила происходит очень медленно.

Планетарная туманность

Та картина звездного неба, которую мы наблюдаем, имеет возраст в десятки-сотни миллиардов лет. Там, где мы видим белые карлики, в пространстве уже возможно существует другое небесное тело. Звезда перешла в класс черного карлика, конечный этап эволюции. В действительности на месте звезды остается сгусток материи, температура которого равняется температуре окружающего пространства. Главная особенность этого объекта – полное отсутствие видимого света. Заметить такую звезду в обычный оптический телескоп достаточно трудно ввиду слабой светимости. Основным критерием обнаружения белых карликов является наличие мощного ультрафиолетового излучения и рентгеновских лучей.

Все известные белые карлики в зависимости от своего спектра делятся на две группы:

  • объекты водородные, спектрального класса DA, в спектре которых отсутствуют линии гелия;
  • гелиевые карлики, спектральный класс DB. Основные линии в спектре приходятся на гелий.

Этап эволюции, в результате которой появляется белый карлик, является последним для немассивных звезд, к которым относится и наша звезда Солнце. На данном этапе звезда обладает следующими характеристиками. Несмотря на столь маленькие и компактные размеры звезды, ее звездное вещество весит ровно столько, сколько требуется для ее существования. Другими словами, белые карлики, которые имеют радиусы в 100 раз меньше радиуса солнечного диска, имеют массу равную массе Солнца или даже весят больше, чем наша звезда.

Этого говорит о том, что плотность белого карлика в миллионы раз выше плотности обычных звезд, находящихся в пределах главной последовательности. К примеру, плотность нашей звезды 1,41 г/см³, тогда как плотность у белых карликов может достигать колоссальных значений 105-110 г/см3.

Сириус B

По яркости света Сириус А в 22 раза превышает яркость нашего Солнца, а вот ее сестра Сириус В светит тусклым светом, заметно уступая по яркость своей ослепительной соседке. Обнаружить присутствие белого карлика удалось благодаря снимкам Сириуса, сделанным рентгеновским телескопом Чандра. Белые карлики не обладают ярко выраженным световым спектром, поэтому принято считать такие звезды достаточно холодными темными космическими объектами. В инфракрасном и в рентгеновском диапазоне Сириус В светит значительно ярче, продолжая излучать огромное количество тепловой энергии. В отличие от обычных звезд, где источником рентгеновских волн служит корона, источником излучения у белых карликов является фотосфера.

Находясь вне главной последовательности по распространенности эти звезды не самые распространенные объекты во Вселенной. В нашей галактике на долю белых карликов приходится всего 3-10% небесных светил. Для этой части звездного населения нашей галактики неопределенность оценки затрудняет слабость излучения в видимой области поляры. Другими словами, свет белых карликов не в состоянии преодолеть большие скопления космического газа, из которых состоят рукава нашей галактики.

Звездное кладбище в нашей галактике

Когда стали известны белые карлики?

Несмотря на то, что первым белым карликом, открытым астрофизиками, считается Сириус В, имеются сторонники версии более раннего знакомства научного сообщества со звездными объектами этого класса. Еще в 1785 году астроном Гершель впервые включил в звездный каталог тройную звездную систему в созвездии Эридана, разделив все звезды по отдельности. Только спустя 125 лет астрономы выявили аномально низкую светимость 40 Эридана В при высокой цветовой температуре, что послужило поводом для выделения таких объектов в отдельный класс.


40 Эридан

Объект обладал слабым блеском, соответствующим звездной величине +9,52m. Белый карлик обладал массой ½ солнечной и имел диаметр меньше земного. Эти параметры противоречили теории внутреннего строения звезд, где светимость, радиус и температура поверхности звезды являлись ключевыми параметрами определения класса звезды. Маленький диаметр, низкая светимость с точки зрения физических процессов не соответствовали высокой цветовой температуре. Такое несоответствие вызывало много вопросов.


Сириус

Строение Солнечной системы

В состав солнечной системы входит восемь основных планет и пять карликовых, вращающихся приблизительно в одной плоскости. По своим физическим свойствам планеты делятся на земную группу и планеты-гиганты.

Планеты земной группы относительно небольшие и плотные, состоят из металлов и минералов. К ним относятся:

  • Меркурий, 
  • Венера, 
  • Земля, 
  • Марс. 

Планеты-гиганты во много раз больше других планет, они состоят из газов и льда. Это:

  • Юпитер, 
  • Сатурн, 
  • Уран 
  • Нептун. 

Орбита Земли делит солнечную систему на две условные области. Во внутренней находятся ближайшие к Солнцу планеты — Меркурий и Венера. Во внешней области — более удалённые от Солнца, чем Земля: Марс, Юпитер, Сатурн, Уран и Нептун.

Пространство между орбитами Марса и Юпитера, а также за Нептуном (пояс Койпера) занимают малые небесные тела: малые планеты и астероиды. Также по пространству Солнечной системы курсируют кометы и потоки метеороидов. 

Рассмотрим планеты солнечной системы по порядку.

Меры предосторожности во время наблюдений

Солнце не может похвастаться самыми большими размерами в сравнении с другими звёздами. Но оно достаточно мощное и расположено к нам относительно близко. Поэтому оно воспринимается на Земле как очень яркое. Полная Луна, даже находясь в контрасте с тёмным ночным небом, слепит во много раз меньше.

Солнце допустимо созерцать невооружённым глазом без вреда для зрения только рано утром, на восходе, или поздно, на закате. В это время блеск небесного диска тысячекратно уменьшается. Днём же крайне опасно прямо смотреть на светило. Тем более нельзя без специальной защиты проводить наблюдения с применением увеличивающих оптических приборов – бинокля, телескопа. Последствиями таких действий может стать ожог глаз, слепота.

Для избежания непоправимого вреда для зрения в астрономических обсерваториях используются особенные солнечные телескопы. В них установлены защитные плотные светофильтры, способные подавлять яркость. Во время любительских наблюдений тоже необходимо смотреть на Солнце через специальный фильтр. Его располагают перед объективом используемого прибора.

Существует ещё способ рассмотрения нужного предмета – проецировать изображение посредством телескопа на экран. Подойдёт даже небольшой любительский прибор, чтобы изучать таким методом пятна или грануляцию на поверхности пылающего шара. Но стоит остерегаться поломки самого телескопа. Чтобы этого не произошло, стоит внимательно изучить инструкцию.

Изучать любые астрономические тела, будь то спутники Солнца или само светило, необычайно интересно. А профессиональные наблюдения и научные исследования особенно ценны. Эти знания в дальнейшем могут очень пригодиться человечеству.

Седна

Единственная известная карликовая планета облака Оорта была открыта в ноябре 2003 года. Названа в честь богини морских зверей в эскимосской мифологии. Считается одним из наиболее удаленных тел Солнечной системы, что очень затрудняет ее исследование.

Известно, что по размерам и массе среди всех планет-карликов ей уступает только Церера. Поверхность Седны – слой метанового и водяного льдов. Постоянной атмосферы небесное тело не имеет. Точную температуру установить пока не удалось.

Из-за высокой
эксцентричности орбиты и большой удаленности от Солнца год на Седне самый
продолжительный среди известных объектов Солнечной системы. Он длится 11,5 тыс.
лет.

Солнце зелёное?

Хотя Солнце и излучает в самых разных диапазонах, отчего в сумме получается белый свет, но излучения с длиной волны в 500 нм получается больше в общей сумме, а это зелёный свет. Поэтому среди всех цветов зелёный должен преобладать, и мы должны видеть Солнце в зелёном оттенке.

Думаете, это совсем глупость? На самом деле зелёный цвет Солнца можно видеть. Вы наверняка слышали про «зелёный луч», который можно иногда видеть на закате, перед тем, как Солнце скроется за горизонтом. Это явление можно увидеть в любом месте, но чаще встречается на море. Есть роман «Зелёный луч», и много фотографий, вот одна из них:

Иногда на закате Солнце бросает зелёный луч.

Иногда небо и в самом деле становится зелёным.

Механизм образования

Белые карлики представляют собой конечную стадию эволюции небольшой звезды с массой, сравнимой с массой Солнца. В каком случае они появляются? Когда в центре звезды, например, как наше Солнце, выгорает весь водород, ее ядро сжимается до больших плотностей, тогда как внешние слои сильно расширяются, и, сопровождаясь общим потускнением светимости, звезда превращается в красного гиганта. Пульсирующий красный гигант затем сбрасывает свою оболочку, поскольку внешние слои звезды слабо связаны с центральным горячим и очень плотным ядром. Впоследствии эта оболочка становится расширяющейся планетарной туманностью. Как видите красные гиганты и белые карлики очень тесно взаимосвязаны.

Процесс охлаждения белого карлика и кристаллизации его центральной части

Сжатие ядра происходит до крайне малых размеров, но, тем не менее, не превышает предела Чандрасекара, то есть верхний предел массы звезды, при котором она может существовать в виде белого карлика.

Научный взгляд на историю появления белых карликов

Дальше в небесных светилах на месте иссякших основных источников термоядерной энергии возникает новый источник термоядерной энергии, тройная гелиевая реакция, или тройной альфа-процесс, обеспечивающая выгорание гелия. Эти предположения полностью подтвердились, когда появилась возможность наблюдать поведение звезд в инфракрасном диапазоне. Спектр света обычной звезды существенно отличается от той картины, которую мы наблюдаем, глядя на красные гиганты и белые карлики. Для вырожденных ядер таких звезд существует верхний предел массы, в противном случае небесное тело становится физически неустойчивым и может наступить коллапс.


Вырождение ядра красного гиганта

Объяснить столь высокую плотность, которую имеют белые карлики с точки зрения физических законов практически невозможно. Происходящие процессы стали понятны, только благодаря квантовой механике, которая позволила изучить состояние электронного газа звездного вещества. В отличие от обычной звезды, где для изучения состояния газа используется стандартная модель, в белых карликах ученые имеют дело с давлением релятивистского вырожденного электронного газа. Говоря понятным языком, наблюдается следующее. При огромном сжатии в 100 и более раз, звездное вещество становится похоже на один большой атом, в котором все атомные связи и цепочки сливаются воедино. В таком состоянии электроны образуют вырожденный электронный газ, новое квантовое образование которого может противостоять силам гравитации. Этот газ образует плотное ядро, лишенное оболочки.


Модель белого карлика

В результате исследований ученых физиков в области квантовой механики, была создана модель белого карлика. Под действием сил гравитации, звездное вещество сжимается до такой степени, что электронные оболочки атомов разрушаются, электроны начинают свое собственное хаотичное движение, переходя из одного состояния в другое. Ядра атомов в отсутствие электронов образуют систему, образуя между собой прочную и устойчивую связь. Электронов в звездном веществе настолько много, что образуется много состояний, соответственно скорость электронов сохраняется. Большая скорость элементарных частиц создает колоссальное внутренне давление электронного вырожденного газа, который в состоянии противостоять силам гравитации.

Может ли быть жизнь вокруг крохотной красной звёзды

Длительное время астрономы исключают красные карлики из списка объектов, вокруг которых могла бы зарождаться и поддерживаться жизнь. Они приводят весомые аргументы. К примеру, из-за небольших размеров звезды все реакции в них должны протекать очень медленно. Чтобы на планете были условия, напоминающие земные, необходимо, чтобы её орбита располагалась близко к звезде. Так, если бы возле Проксимы Центавра была бы планета, на которой была подобная земной температуры, она бы находилась на расстоянии примерно 4,75 млн км от Проксимы Центавры, и год на ней длился бы немногим больше шести земных дней.

Если планеты находятся слишком близко к материнской звезде, они пребывают в так называемом приливном захвате. Это значит, что планета совершает оборот вокруг своей оси за такое же время, что и вокруг звёзды. Сутки в этих условиях длятся столько же, сколько и год. Жизнь на таких планетах должна существовать в пределах терминатора. Если же у планеты есть массивный спутник, то он мог бы взять на себя приливные силы. Вероятность возникновения жизни в этих условиях существенно повышается.

Последние исследования показывают, что, если на планетах, расположенных около красных крохотных карликовых светил имеется плотная атмосфера, она могла повысить температуру на «тёмной» стороне. Достаточно глубокие океаны с морской водой служили бы мощным аккумулятором тепла. Это означает, что планеты, расположенные на близком расстоянии от звёзд, могут быть пригодными для существования растений.

Эти звёзды очень изменчивы. На них возможно появление большого количества пятен, ослабляющих и без того скудный свет. Это приводило бы к снижению температуры. Увеличение альбедо отражало больше света, запускало бы положительную обратную связь. А если красные карлики образуют вспышки, увеличивающие во много раз светимость, то атмосфера должна была бы улетучиться. Наличие магнитного поля планеты повысило бы шансы на поддержание жизни.

Внутреннее строение Солнца

Масса Солнца соответствует 99% всей Солнечной системы и равна 2×1027 тонн. Оставшийся процент приходится на планеты, спутники, кометы, астероиды. Диаметр светила равен 109 диаметрам Земли и составляет 1,39 млн. км. От жёлтого карлика до голубой планеты 149,6 млн. км. Это, так называемая, одна астрономическая единица. До центра Млечного пути от Солнца 26 тысяч световых лет. Один оборот по своей орбите светило делает за 200 млн. лет. Вокруг центра галактики оно движется со скоростью 217 км/с.

В центре светила находится ядро. В нём содержится 40% всей солнечной массы. Диаметр его примерно равен 350 тыс. км. Плотность ядра огромная и в 150 раз превышает плотность воды. Температура солнечного ядра составляет около 13,6 млн. градусов по Цельсию. Именно в ядре происходит термоядерная реакция и выделяется энергия, так как молекулы водорода под воздействием температуры и плотности сливаются друг с другом и превращаются в гелий. При этом испускаются нейтрино и гамма-фотоны.

Гамма-фотоны, в процессе своего движения к внешней солнечной оболочке, распадаются на фотоны с более низкой энергией, а нейтрино никак не видоизменяются, проходя через раскалённую массу.

За ядром находится конвективная зона. Температурные режимы в ней значительно ниже и не превышают рядом с ядром 5 млн. градусов по Цельсию. Естественно, при такой температуре ядерный синтез происходить не может. Толщина этой зоны составляет примерно 300 тыс. км. На этом расстоянии температура падает до 6 тыс. градусов по Цельсию. Задача зоны состоит в том, чтобы очень медленно и постепенно передавать к поверхности светила высокую температуру. В конвективной зоне также создаётся магнитное поле жёлтого карлика.

Далее тянется фотосфера. Она и считается поверхностью нашего родного светила. Именно из неё исходит солнечное излучение. На внешнем крае фотосферы температура достигает 4,5 тысячи градусов по Цельсию. От поверхности этого слоя рассчитываются все расстояния, в том числе и расстояние до Земли.

Фотосферу окружает очень тонкая внешняя оболочка. Называется она – хромосфера. Толщина её не превышает 2 тыс. км. Температура в фотосфере увеличивается и достигает 10 тысяч градусов по Цельсию. На некоторых участках она может доходить до 20 тысяч градусов. Плотность в этой зоне сравнительно небольшая, преобладают молекулы водорода. Они придают внешней оболочке красный цвет.


Солнечная корона над поверхностью Солнца

Сверху фотосферу окружает солнечная корона. Плотность слоя очень низкая, а вот температура высокая. Она достигает 1-2 миллионов градусов по Цельсию. Почему это происходит? Существует гипотеза, что причиной является магнитное поле. Благодаря его воздействию, возникают солнечные вспышки. Они и нагревают корону до высоких температур. Сама корона практически не видима из-за низкой плотности. С земли её можно наблюдать во время солнечного затмения, когда Луна полностью загораживает Солнце. Именно в этот момент вокруг спутника Земли и наблюдается свечение, являющееся ничем иным как короной.

Из короны постоянно истекает огромный поток ионизированных частиц. Это солнечный ветер, представляющий собой гелиево-водородную плазму. Частицы несутся со скоростью от 400 до 750 км/с. Они пронизывают всю солнечную систему, а свой путь заканчивают в гелиосфере. Это место, где начинается межзвёздная среда, а скорость ионизированных частиц стремится к нулю.

Солнечный ветер негативно влияет на поверхности планет Солнечной системы. Также негативно он воздействует и на Землю. Но мощное магнитное поле голубой планеты создаёт защитный экран. Именно благодаря ему, солнечный ветер и не может проникнуть на поверхность Земли.

Общие характеристики

Спектр звезды класса M6V

коричневые карликиСолнцабелые карлики

Тот факт, что красные карлики остаются на главной последовательности, в то время как другие звезды сходят с неё, позволяет определять возраст звёздных скоплений путём нахождения массы, при которой звёзды вынуждены сойти с главной последовательности. Кроме того, тот факт, что на данный момент не найдено ни одного красного карлика вне главной последовательности, свидетельствует о том, что Вселенная имеет конечный возраст.

Спектральный класс Радиус Масса Светимость Температура
R/R M/M L/L K
O2 16 158 2 000 000 54 000
O5 14 58 800 000 46 000
B0 5,7 16 16 000 29 000
B5 3,7 5,4 750 15 200
A0 2,3 2,6 63 9600
A5 1,8 1,9 24 8700
F0 1,5 1,6 9,0 7200
F5 1,2 1,35 4,0 6400
G0 1,05 1,08 1,45 6000
G2 1,0 1,0 1,0 5700
G5 0,98 0,95 0,70 5500
K0 0,89 0,83 0,36 5150
K5 0,75 0,62 0,18 4450
M0 0,64 0,47 0,075 3850
M5 0,36 0,25 0,013 3200
M8 0,15 0,10 0,0008 2500
M9.5 0,10 0,08 0,0001 1900

Эволюция

Гелиевая вспышка и сброс внешних оболочек красным гигантом продвигает звезду по диаграмме Герцшпрунга-Рассела, обуславливая его превалирующий химический состав. Жизненный цикл белого карлика, после этого, остается стабилен до самого своего остывания, когда звезда теряет свою светимость и становится невидимой, входя в стадию так называемого «черного карлика», — конечный результат эволюции, хотя в современной литературе этот термин используется все реже.

Перетекание вещества со звезды на белый карлик, который из за низкой светимости не виден

Присутствие рядом звездных компаньонов продляет их жизнь из-за падения вещества на поверхность через формирование аккреционного диска. Особенности аккреции вещества в парных системах могут приводить к накоплению вещества на поверхности белых карликов, что в результате приводит к взрыву новой или сверхновой звезды (в случае особо массивных) типа Ia.

Взрыв сверхновой в представлении художника

В случае если в системе «белый карлик – красный карлик» аккреция нестационарна, результатом может быть своеобразный взрыв белого карлика (например U Gem (UG)) или же новоподобных переменных звезд, взрыв которых носит катастрофический характер.

Остаток сверхновой SN 1006 — представляет собой взорвавшейся белый карлик, который находился в двойной системе. Он постепенно захватывал вещество звезды-компаньона и возрастающая масса спровоцировала термоядерный взрыв, который разорвал карлика

Положение на диаграмме Герцшпрунга-Рассела

Положение белых карликов на диаграмме Герцшпрунга-Рассела

На диаграмме они занимают левую нижнюю часть, принадлежа ветви звезд, покинувших главную последовательность из состояния красных гигантов.

Здесь находится область горячих звезд с низкой светимостью, которая является второй по численности среди звезд наблюдаемой Вселенной.

История открытия

Видимое движение Сириуса по небесной сфере

В 1844 году немецкий астроном и математик Фридрих Бессель при наблюдении Сириуса обнаружил небольшое отклонение звезды от прямолинейного движения, и сделал предположение о наличии у Сириуса невидимой массивной звезды-спутника.

Его предположение было подтверждено уже в 1862 году, когда американский астроном и телескопостроитель Альван Грэхэм Кларк, занимаясь юстировкой самого крупного в то время рефрактора, обнаружил возле Сириуса неяркую звезду, которую впоследствии окрестили Сириус Б.

Белый карлик Сириус Б имеет низкую светимость, а гравитационное поле воздействует на своего яркого компаньона довольно заметно, что свидетельствует о том, что у этой звезды крайне малый радиус при значительной массе. Так впервые был открыт вид объектов, названный белыми карликами. Вторым подобным объектом была звезда Маанена, находящаяся в созвездии Рыб.

Солнечный ветер

Солнечный ветер — непрерывный поток плазмы солнечного происхождения, распространяющийся  от атмосферы Солнца и заполняющий собой Солнечную систему. Из-за  высокой температуры солнечной короны, давление вышележащих слоев не может уравновесить давление вещества короны. Это вещество и выбрасывается в пространство в виде солнечного ветра,  распространяясь на расстояние до а.е. – астрономическая единица1 астрономическая единица = 149 597 871 километра. Это среднее расстояние от Земли до Солнца100 а.е.

На рисунке пустое поле в центре закрывает пространство в 32 раза больше Солнца. Диаметр изображения — половина диаметра орбиты Меркурия. Точки за Солнцем — звёзды.

Распространение во Вселенной

Большая часть звёзд, наблюдаемые невооружённым глазом – голубые или белые. На основании этого у наблюдателя складывается неверное впечатление, будто таких объектов больше всего во Вселенной. На самом деле наиболее распространёнными являются красные крошечные светила. Их просто не видно невооружённым глазом. Интересно, что красные карлики составляют около 80 % всего звёздного населения Галактики.

Ближайшая к Солнцу звезда рассматриваемого класса – Проксима Центавра. Она находится на расстоянии свыше четырёх световых лет от Земли (или 40 трлн. км). Её радиус составляет 15% от солнечного, а масса – 12%. Видимая звёздная величина этого космического объекта – 11.

В наблюдаемой части Вселенной находится слишком мало красных карликов, которые вовсе не содержат металлов. Между тем схема Большого взрыва предполагает, что в самых первых звёзд должны быть только легчайшие элементы и только немного лития. Если бы среди этих светил были красные карлики, то они были видимыми. Но такого не происходит. Учёные объясняют это тем, что красные карлики не могут формироваться и запустить термоядерную реакцию без участия металлов. Вот почему первые звёзды были очень огромными и тяжёлыми. Выбросив большое количество металлов, они погибли. Тяжёлые элементы пошли на образование более лёгких и крохотных звёзд.

Открытие

Познакомиться с OGLE-TR-122b удалось благодаря охотникам за таинственной и неуловимой тёмной материей. Как можно отыскать расположенный за сотни и тысячи световых лет от нас объект, не излучающий ничего? В рамках польско-американского проекта OGLE (имя проекта послужило названием открытых в ходе его объектам) было предложено решение – по гравитационному воздействию, которое такой объект будет оказывать на свет, идущий к Земле от звёзд или галактик, расположенных дальше. Современная наука располагает техническими средствами, способными такое незначительное отклонение зафиксировать.

OGLE-TR-122b — самая маленькая из открытых звезд

Побочным, если так можно выразиться, результатом программы явилось открытие многих объектов, таких как коричневые или красные карлики, невидимые с Земли из-за маленькой массы и крайне низкой светимости. Точно так же в 2005 году была открыта и самая маленькая звезда во Вселенной – красный карлик OGLE-TR-122b. Это вторая звезда двойной системы. OGLE-TR-122a – его сосед, более массивен, похож на наше Солнце, а вот «младший брат» это типичный представитель красных карликов. Диаметр малыша – всего лишь порядка 160 тысяч километров. Словосочетание «всего лишь» уместно, так как диаметр нашего Юпитера не намного меньше – 140 тысяч км. Масса же OGLE-TR-122b – около ста масс Юпитера или 9% солнечной. Зато самая маленькая звезда во Вселенной в 50 раз плотнее нашего светила.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector