Звезды гиганты и сверхгиганты, их открытие и эволюция

VV Цефея

Красный гипергигант, претендующий на звание самой большой звезды во Вселенной. Увы, это не так, но очень близко. По размеру она на третьем месте.

VV Цефея – затменно-переменная звезда, то есть двойная, и гигант в этой системе – компонент А, о нём и пойдет речь. Второй компонент – ничем особым не примечательная голубая звезда, в 8 раз больше Солнца. А вот красный гипергигант – еще и пульсирующая звезда, с периодом 150 суток. Её размеры могут меняться от 1050 до 1900 диаметров Солнца, и на максимуме она светит в 575 000 раз ярче нашего светила!

Сравнение размеров Солнца и различных более крупных звезд с VV Цефея. Эта звезда находится от нас в 5000 световых лет, и при этом на небе имеет яркость в 5.18 m, то есть при чистом небе и хорошем зрении её можно найти, а уж в бинокль вообще запросто.

Двойные, тройные и так далее

Двойные звезды — вовсе не редкость во Вселенной: почти половина всех светил живут парами. Обычно они рождаются вместе, из одного пылевого облака. Их связывает гравитация — и ничто не может разлучить. Если звезды родились близнецами, то есть одинаковыми по размеру и массе, то они вращаются вокруг общего центра. Если же одна из звезд крупнее, тогда центр масс находится ближе к ней.

Бывают и тройные звездные системы, где три светила, объединенные гравитацией, существуют как единое целое. В таких системах обычно две звезды вращаются рядом, а третья — вокруг них по большей орбите.

Четверная звезда обычно представляет собой союз двух звездных пар, объединенных общим центром вращения. Четыре звезды для звездной системы вовсе не предел, иногда звезды объединяются по пять, шесть и более, но это встречается очень редко. Все системы звезд, в которых больше двух членов, ученые называют кратными.

Иногда то, что кажется наблюдателю с Земли двойной звездой, на самом деле — совершенно разные звезды, расположенные в космосе очень далеко друг от друга. Такие явления называются оптическими двойными звездами.

Поделиться ссылкой

Ссылки [ править ]

  1. Гигантская звезда, запись в Астрономической энциклопедии , изд. Патрик Мур, Нью-Йорк: Издательство Оксфордского университета, 2002. ISBN  0-19-521833-7 .
  2. ^ гигант, запись в Файловом словаре астрономии «Факты» , изд. Джон Дейнтит и Уильям Гулд, Нью-Йорк: Факты в файле, Inc., 5-е изд., 2006. ISBN 0-8160-5998-5 . 
  3. Рассел, Генри Норрис (1914). «Связь между спектрами и другими характеристиками звезд». Популярная астрономия . 22 : 275–294. Bibcode .
  4. Гигантская звезда, запись в Кембриджском астрономическом словаре , Жаклин Миттон , Кембридж: Cambridge University Press, 2001. ISBN 0-521-80045-5 . 
  5. ^ Эволюция звезд и звездных популяций , Маурицио Саларис и Санти Кассизи, Чичестер, Великобритания: John Wiley & Sons, Ltd., 2005. ISBN 0-470-09219-X . 
  6. Элдридж, JJ; Тут, Калифорния (2004). «Изучение разделения и перекрытия между звездами AGB и супер-AGB и сверхновыми». Memorie della Società Astronomica Italiana . 75 : 694. arXiv . Bibcode .
  7. ^ Мазумдар, А .; и другие. (Август 2009 г.), «Астеросейсмология и интерферометрия звезды красного гиганта Змееносца», Астрономия и астрофизика , 503 (2): 521–531, arXiv , Bibcode , doi , S2CID

VY Большого Пса

Диаметр VY Большого Пса, тем не менее, по некоторым данным, оценивается в 1800-2100 солнечных, то есть это явный рекордсмен среди всех прочих красных гипергигантов. Окажись она в центре Солнечной системы, она поглотила бы все планеты, вместе с Сатурном. Предыдущие кандидаты на звание самых больших звёзд во Вселенной тоже вместились бы в неё полностью.

Свету достаточно всего 14. 5 секунд, чтобы обогнуть наше Солнце полностью. Чтобы обогнуть VY Большого Пса, свету пришлось бы лететь 8.5 часов! Если бы вы решились на такой облет вдоль поверхности на истребителе, со скоростью 4500 км/ч, то такое безостановочное путешествие заняло бы 220 лет.

Эта звезда еще вызывает массу вопросов, так как точный её размер установить сложно из-за размытой короны, которая имеет гораздо меньшую плотность, чем солнечная. Да и сама звезда имеет плотность в тысячи раз меньше, чем плотность воздуха, которым мы дышим.

Кроме того, VY Большого Пса теряет своё вещество и образовала вокруг себя заметную туманность. В этой туманности, возможно, теперь даже больше вещества, чем в самой звезде. К тому же она нестабильная, и в ближайшие 100 тысяч лет взорвется гиперновой. К счастью, до неё 3900 световых лет, и Земле этот страшный взрыв не угрожает.

Эту звезду можно найти на небе в бинокль или в небольшой телескоп – её яркость меняется от 6.5 до 9.6 m.

Звезды гиганты, их названия и примеры

По данным астрономов, к гигантскому виду относят Арктур, Антарес, Поллукс и другие. Стоит отметить, что популярная звезда Альдебаран является сверхгигантом.

Например, гигантский красный представитель класса находится в созвездии Кита — это известная Мира. Или Тубан в созвездии Дракона, относящийся к белым светилам.Конечно же, это не всё. На самом деле, их очень много и перечислять подряд, наверное, не имеет смысла.

Звезда Мира

Итак, мы узнали что собой представляют не только гигантские звезды, но и сверхгиганты.

Каждая яркая звезда это не просто красивая оболочка. Характеристика любой из них очень любопытная, а также раскрывает совокупность свойств, жизненный путь.

Более того, исследование отдельно взятого космического объекта или их групп играет важное значение для понимания того, как устроен наш мир.За ней интересно наблюдать и изучать её особенности. Как много еще всего во Вселенной непостижимого и прекрасного!

Характеристики

Шаровое звёздное скопление NGC 288. Яркие жёлтые и красные звёзды являются звёздами ветви красных гигантов

Красные гиганты — звёзды поздних спектральных классов: K и M, и низких температур — 3000—5000 K, поэтому они излучают в основном в красном и инфракрасном свете. Вместе с этим у красных гигантов большие радиусы — в диапазоне приблизительно 10—200 R, и, как следствие, высокие светимости — от 102 до 104L, а их абсолютные звёздные величины в основном лежат в диапазоне от 0m до −3m. Красные гиганты относятся к классу светимости III и занимают верхнюю правую часть диаграммы Герцшпрунга — Рассела. В ходе эволюции (см. ниже) красными гигантами становятся звёзды с массами не менее 0,2 M и не более 10 M.

Внутреннее строение красных гигантов различается в зависимости от их эволюционной стадии (см. ниже), но в любом случае в их ядрах уже исчерпан водород, а ядерное горение водорода происходит в слоевом источнике. Ядро сначала состоит из гелия и является инертным, затем в нём начинается горение гелия, при котором синтезируется углерод и кислород. Когда гелий исчерпывается, ядро красного гиганта снова становится инертным и состоит из углерода и кислорода. Оболочки красных гигантов конвективны и в некоторых случаях конвекция способна выносить элементы, синтезированные в недрах, на поверхность звезды, что может приводить к аномалиям химического состава.

Внешние слои красных гигантов протяжённы и сильно разрежены, в среднем плотность таких звёзд составляет порядка 10−4—10−3 г/см3, но у них очень плотные ядра: в определённый момент эволюции масса ядра может составлять четвёртую часть массы звезды при радиусе в 1000 раз меньше радиуса всей звезды — плотность ядра в таком случае равна 3,5⋅105 г/см3. Для красных гигантов характерен сильный звёздный ветер — на поздних стадиях темп потери массы может достигать 10−4M в год. Часто у красных гигантов наблюдается переменность различных типов, в том числе и с высокой амплитудой, особенно у наиболее ярких из них: они могут быть миридами, полуправильными переменными и переменными других типов.

Красные гиганты часто рассматриваются вместе с красными сверхгигантами: последние крупнее и ярче, но и те, и другие звёзды относятся к поздним спектральным классам и в их спектрах наблюдаются полосы поглощения молекул. Красные гиганты и сверхгиганты имеют очень плотные небольшие ядра и разреженные конвективные оболочки.

Доля красных гигантов среди звёзд невелика — у звёзд, которые становятся красными гигантами, эта эволюционная стадия длится не более 10 % срока их жизни, однако благодаря высокой яркости они видны с больших расстояний, и среди видимых невооружённым глазом звёзд их около 10 %. Красными гигантами являются, например, Арктур и Альдебаран.

Образование и эволюция

После стадии главной последовательности, когда звезда израсходовала водород в ядре, и некоторого его сжатия, в нём начинается реакция горения гелия. Внешние слои звезды сильно расширяются, и, хотя светимость увеличивается, поток через поверхность звезды уменьшается, и она остывает. Этот процесс, а также дальнейшая судьба звезды, зависит от её массы.

Звёзды малой массы

Звезды с самой маленькой массой, по разным оценкам, до 0,25–0,35 солнечных масс, никогда не станут гигантами. Такие звёзды полностью конвективны, и поэтому водород расходуется равномерно и продолжает участвовать в реакции до тех пор, пока не израсходуется полностью. Модели показывают, что звезда будет постепенно разогреваться и станет голубым карликом, но гелий в ней не загорится — температура внутри её так и не станет достаточно высокой. После этого звезда превратится в белого карлика, состоящего преимущественно из гелия. Однако, наблюдательных данных, подтверждающих это, нет: срок жизни красных карликов может достигать 10 триллионов лет, в то время как возраст Вселенной — порядка 14 миллиардов лет.

Звёзды со средней массой

Внутренняя структура подобной Солнцу звезды и красного гиганта.

Если масса звезды превышает этот предел, то она уже не полностью конвективна, и когда звезда потребит весь водород, доступный в её ядре для термоядерных реакций, её ядро начнёт сжиматься. Водород начнёт сгорать уже не в ядре, а вокруг него, из-за чего звезда начнёт расширяться и охлаждаться, и немного увеличит светимость, став субгигантом. Гелиевое ядро будет увеличиваться и в какой-то момент его масса превысит предел Шёнберга — Чандрасекара. Оно быстро сожмётся, и, возможно, станет вырожденным. Внешние слои звезды расширятся, а также начнётся перемешивание вещества, так как конвективная зона тоже увеличится. Так звезда станет красным гигантом.

Если масса звезды не превышает ~0,4 массы Солнца, то гелий в ней так и не загорится, и, когда водород закончится, звезда сбросит оболочку и станет гелиевым белым карликом.

Если же масса звезды больше ~0,4 массы Солнца, то температура в ядре в какой-то момент достигнет 108 K, в ядре произойдет гелиевая вспышка и запустится тройной альфа-процесс. Внутри звезды понизится давление, следовательно, понизится светимость, и звезда перейдёт с ветви красных гигантов на горизонтальную ветвь.

Постепенно в ядре заканчивается и гелий, и в то же время накапливается углерод и кислород. Если масса звезды меньше 8 солнечных, то ядро из углерода и кислорода сожмётся, станет вырожденным, и горение гелия будет происходить вокруг него. Как и в случае с вырождением гелиевого ядра, начнётся перемешивание вещества, которое повлечёт за собой увеличение размеров звезды и рост светимости. Эта стадия называется асимптотической ветвью гигантов, на которой звезда находится лишь около миллиона лет. После этого звезда станет нестабильной, потеряет оболочку и от неё останется углеродно-кислородный белый карлик, окруженный планетарной туманностью.

Звёзды с большой массой

У звёзд главной последовательности с большими массами (более 8 солнечных масс) после формирования углеродно-кислородного ядра начнёт сгорать углерод в термоядерных реакциях. Кроме того, в таких звёздах стадия горения гелия начинается не в результате гелиевой вспышки, а постепенно.

В звёздах с массами от 8 до 10–12 солнечных впоследствии могут сгорать и более тяжёлые элементы, но до синтеза железа не доходит. Их эволюция, в целом, оказывается такой же, как и у менее массивных звёзд: они также проходят стадии красных гигантов, горизонтальную ветвь и асимптотическую ветвь гигантов, а затем становятся белыми карликами. Они отличаются большей светимостью, а белый карлик, который от них остаётся, состоит из кислорода, неона и магния. В редких случаях происходит взрыв сверхновой.

Звёзды с массой более 10–12 солнечных имеют очень большую светимость, и на этих стадиях эволюции их относят к сверхгигантам, а не к гигантам. Они последовательно синтезируют всё более тяжёлые элементы, доходя до железа. Дальнейший синтез не происходит, так как энергетически невыгоден, и в звезде образуется железное ядро. В некоторый момент ядро становится таким тяжелым, что давление больше не может поддерживать вес звезды и самого себя, и коллапсирует с выделением большого количества энергии. Это наблюдается как взрыв сверхновой, а от звезды остаётся либо нейтронная звезда, либо чёрная дыра.

Виды звезд в наблюдаемой Вселенной

Во Вселенной существует множество различных звезд. Большие и маленькие, горячие и холодные, заряженные и не заряженные. В этой статье мы назовем основные виды звезд, а также дадим подробную характеристику Жёлтым и Белым карликам.

  1. Жёлтый карлик. Жёлтый карлик – тип небольших звёзд главной последовательности, имеющих массу от 0,8 до 1,2 массы Солнца и температуру поверхности 5000–6000 K. Подробнее об этом типе звезд нем смотрите ниже.
  2. Красный гигант. Красный гигант – это крупная звезда красноватого или оранжевого цвета. Образование таких звезд возможно как на стадии звездообразования, так и на поздних стадиях их существования. Крупнейшие из гигантов превращаются в красных супергигантов. Звезда под названием Бетельгейзе из созвездия Орион – самый яркий пример красного супергиганта.
  3. Белый карлик. Белый карлик – это то, что остаётся от обычной звезды с массой, не превышающей 1,4 солнечной массы, после того, как она проходит стадию красного гиганта. Подробнее об этом типе звезд нем смотрите ниже.
  4. Красный карлик. Красные карлики – самые распространённые объекты звёздного типа во Вселенной. Оценка их численности варьируется в диапазоне от 70 до 90% от числа всех звёзд в галактике. Они довольно сильно отличаются от других звезд.
  5. Коричневый карлик. Коричневый карлик – субзвездные объекты (с массами в диапазоне примерно от 0,01 до 0,08 массы Солнца, или, соответственно, от 12,57 до 80,35 массы Юпитера и диаметром примерно равным диаметру Юпитера), в недрах которых, в отличие от звезд главной последовательности, не происходит реакции термоядерного синтеза c превращением водорода в гелий.
  6. Субкоричневые карлики. Субкоричневые карлики или коричневые субкарлики – холодные формирования, по массе лежащие ниже предела коричневых карликов. Масса их меньше примерно одной сотой массы Солнца или, соответственно, 12,57 массы Юпитера, нижний предел не определён. Их в большей мере принято считать планетами, хотя к окончательному заключению о том, что считать планетой, а что – субкоричневым карликом научное сообщество пока не пришло.
  7. Черный карлик. Черные карлики – остывшие и вследствие этого не излучающие в видимом диапазоне белые карлики. Представляет собой конечную стадию эволюции белых карликов. Массы черных карликов, подобно массам белых карликов, ограничиваются сверху 1,4 массами Солнца.
  8. Двойная звезда. Двойная звезда – это две гравитационно связанные звезды, обращающиеся вокруг общего центра масс.
  9. Новая звезда. Звезды, светимость которых внезапно увеличивается в 10 000 раз. Новая звезда представляет собой двойную систему, состоящую из белого карлика и звезды-компаньона, находящейся на главной последовательности. В таких системах газ со звезды постепенно перетекает на белый карлик и периодически там взрывается, вызывая вспышку светимости.
  10. Сверхновая звезда. Сверхновая звезда – это звезда, заканчивающая свою эволюцию в катастрофическом взрывном процессе. Вспышка при этом может быть на несколько порядков больше чем в случае новой звезды. Столь мощный взрыв есть следствие процессов, протекающих в звезде на последний стадии эволюции.
  11. Нейтронная звезда. Нейтронные звезды (НЗ) – это звездные образования с массами порядка 1,5 солнечных и размерами, заметно меньшими белых карликов, порядка 10-20 км в диаметре. Они состоят в основном из нейтральных субатомных частиц – нейтронов, плотно сжатых гравитационными силами. В нашей Галактике, по оценкам ученых, могут существовать от 100 млн до 1 млрд нейтронных звёзд, то есть где-то по одной на тысячу обычных звёзд.
  12. Пульсары. Пульсары – космические источники электромагнитных излучений, приходящих на Землю в виде периодических всплесков (импульсов). Согласно доминирующей астрофизической модели, пульсары представляют собой вращающиеся нейтронные звёзды с магнитным полем, которое наклонено к оси вращения. Когда Земля попадает в конус, образуемый этим излучением, то можно зафиксировать импульс излучения, повторяющийся через промежутки времени, равные периоду обращения звезды. Некоторые нейтронные звёзды совершают до 600 оборотов в секунду.
  13. Цефеиды. Цефеиды – класс пульсирующих переменных звёзд с довольно точной зависимостью период-светимость, названный в честь звезды Дельта Цефея. Одной из наиболее известных цефеид является Полярная звезда. Приведенный перечень основных видов (типов) звезд с их краткой характеристикой, разумеется, не исчерпывает всего возможного многообразия звезд во Вселенной.

Эволюция

Звезды главной последовательности O-типа и самые массивные сине-белые звезды B-типа становятся сверхгигантами. Из-за большой массы они имеют короткую продолжительность жизни — от 30 миллионов до нескольких сотен тысяч лет. В основном они наблюдаются в молодых галактических структурах, таких как рассеянные скопления , рукава спиральных галактик и неправильные галактики . Их меньше в выпуклостях спиральных галактик и редко наблюдается в эллиптических галактиках или шаровых скоплениях , которые состоят в основном из старых звезд.

Сверхгиганты развиваются, когда у массивных звезд главной последовательности заканчивается водород в их ядрах, и в этот момент они начинают расширяться, как и звезды с меньшей массой. Однако, в отличие от звезд с меньшей массой, они начинают плавно плавить гелий в ядре вскоре после того, как исчерпали свой водород. Это означает, что они не увеличивают свою светимость так резко, как звезды с меньшей массой, и они продвигаются почти горизонтально по диаграмме HR, чтобы стать красными сверхгигантами. Также, в отличие от звезд с меньшей массой, красные сверхгиганты достаточно массивны, чтобы плавить элементы тяжелее гелия, поэтому они не выходят из своей атмосферы как планетарные туманности после периода горения водородной и гелиевой оболочки; вместо этого они продолжают сжигать более тяжелые элементы в своих ядрах, пока не разрушатся. Они не могут потерять достаточно массы, чтобы сформировать белый карлик, поэтому они оставят нейтронную звезду или остаток черной дыры, обычно после взрыва сверхновой звезды.

Звезды с массой более 40  M не могут расшириться в красный сверхгигант. Поскольку они горят слишком быстро и слишком быстро теряют свои внешние слои, они достигают стадии синего сверхгиганта или, возможно, желтого гипергиганта, прежде чем вернуться, чтобы стать более горячими звездами. Самые массивные звезды, превышающие примерно 100  M , практически не сдвигаются со своего положения O звезд главной последовательности. Они конвектируют настолько эффективно, что смешивают водород от поверхности до ядра. Они продолжают синтезировать водород до тех пор, пока он почти полностью не истощится по всей звезде, а затем быстро эволюционируют, проходя серию стадий с такими же горячими и яркими звездами: сверхгиганты, косые звезды, звезды типа WNh, WN и, возможно, WC или WO. . Ожидается, что они взорвутся как сверхновые, но неясно, как далеко они разовьются, прежде чем это произойдет. Существование этих сверхгигантов, все еще сжигающих водород в своих ядрах, может потребовать немного более сложного определения сверхгиганта: массивная звезда с увеличенными размерами и светимостью из-за накопления продуктов термоядерного синтеза, но все еще с остающимся водородом.

Считается, что первые звезды во Вселенной были значительно ярче и массивнее, чем звезды в современной Вселенной. Являясь частью теоретической популяции звезд III , их существование необходимо для объяснения наблюдений за элементами, отличными от водорода и гелия в квазарах . Возможно, они были больше и ярче, чем любой известный сегодня сверхгигант, но их структура была совершенно иной, с меньшей конвекцией и меньшей потерей массы. Их очень короткая жизнь, вероятно, закончилась насильственным фотораспадом или сверхновыми с парной нестабильностью.

Примеры голубых сверхгигантов

Ригель

Самый известный пример — Ригель (бета Ориона), самая яркая звезда в созвездии Орион, масса которой приблизительно в 20 раз больше массы Солнца и его светимость примерно в 130 000 раз выше солнечной, а значит, это одна из самых мощных звёзд в Галактике (во всяком случае, самая мощная из ярчайших звёзд на небе, так как Ригель — ближайшая из звёзд с такой огромной светимостью). Древние египтяне связывали Ригель с Сахом — царём звёзд и покровителем умерших, а позже — с Осирисом.

Гамма Парусов

Гамма Парусов — кратная звезда, ярчайшая в созвездии Паруса. Имеет видимую звёздную величину в +1,7m. Расстояние до звёзд системы оценивается в 800 световых лет. Гамма Парусов (Регор) — массивный голубой сверхгигант. Имеет массу в 30 раз больше массы Солнца. Его диаметр в 8 раз больше солнечного. Светимость Регора — 10 600 солнечных светимостей. Необычный спектр звезды, где вместо тёмных линий поглощения имеются яркие эмисионные линии излучения, дал название звезде как «Спектральная жемчужина южного неба»

Альфа Жирафа

Расстояние до звезды примерно 7 тысяч световых лет, и тем не менее, звезда видна невооружённым глазом. Это третья по яркости звезда в созвездии Жирафа, первое и второе место занимают Бета Жирафа и CS Жирафа соответственно.

Дзета Ориона

Дзета Ориона (имеет название Альнитак) — звезда в созвездии Ориона, которая является самой яркой звездой класса O с визуальной звездной величиной +1,72 (в максимуме +1,72 и в минимуме до +1,79), левая и самая близкая звезда астеризма «Пояса Ориона». Расстояние до звезды — около 800 световых лет, светимость примерно 35 000 солнечных.

Тау Большого Пса

Спектрально-двойная звезда в созвездии Большого Пса. Она является наиболее яркой звездой рассеянного звёздного скопления NGC 2362, находясь на расстоянии 3200 св. лет от Земли. Тау Большого Пса — голубой сверхгигант спектрального класса O с видимой звёздной величиной +4,37m. Звёздная система Тау Большого Пса состоит, по крайней мере, из пяти компонентов. В первом приближении Тау Большого Пса — тройная звезда в которой две звезды имеют видимую звёздную величину +4,4m и +5,3m и отстоят друг от друга на 0,15 угловых секунд, а третья звезда имеет видимую звёздную величину +10m и и отстоит от них на 8 угловых секунд, обращаясь с периодом 155 дней вокруг внутренней пары.

Дзета Кормы

Дзета Кормы в представлении художника

Дзета Кормы — ярчайшая звезда созвездия Кормы. Звезда имеет собственное имя Наос. Это массивная голубая звезда, имеющая светимость 870 000 светимостей Солнца. Дзета Кормы массивнее Солнца в 59 раз. Имеет спектральный класс O9.

Предполагается, что в ближайшие сотни тысяч лет Дзета Кормы будет постепенно остывать и расширяться, и пройдёт все спектральные классы: B, A, F, G, K, и M, по мере остывания. По мере этого основное излучение звезды перейдёт в видимый диапазон, и Наос станет одной из ярчайших звёзд будущего земного неба. Спустя 2 миллиона лет, Наос будет иметь спектральный класс M5, а его размеры будут гораздо больше текущей земной орбиты. Затем Наос взорвётся, став сверхновой звездой. Ввиду небольшого расстояния до Земли эта сверхновая будет гораздо ярче блеска полной Луны, а ядро звезды сколлапсирует сразу в чёрную дыру. Не исключено, что это будет сопровождаться сильным гамма-всплеском.

Исключения из главной последовательности диаграммы Герцшпрунга — Рессела: красные гиганты и красные карлики

Когда для целого ряда звезд были получены сведения о их светимости и о температуре их поверхности, следующим логическим шагом было сопоставление этих данных. Эксперименты с раскаленными предметами на Земле давали основание предполагать, что чем холоднее звезда, тем слабее будет ее излучение и тем более красной она окажется. Но выяснилось, что это далеко не всегда так.

Например, если согласиться со значениями температуры, принятыми для спектральных классов, то наиболее холодными из обыкновенных звезд должны быть звезды класса М. По их спектральным линиям и положению максимума излучения типичная температура поверхности для звезд этого класса была оценена в 2500°С (напомним для сравнения, что температура поверхности нашего Солнца составляет 6000°С). И действительно, все звезды класса М были красноватыми, по вопреки ожиданиям они не все были слабыми.

Правда, многие из них были-таки слабыми, хотя некоторые (например, звезда Барнарда) и находились совсем близко. Однако другие, вроде Бетельгейзе в созвездии Ориона или Антареса в Скорпионе, были красноватого цвета, но тем не менее казались очень яркими. И не потому, что находились так уж близко от нас. Они обладали не только большой видимой яркостью, но и большой светимостью. Излучение Антареса, например, почти в 10 000 раз превосходит излучение Солнца.

Еще в 1905 г. Э. Герцшпрунг, размышляя над этим вопросом, пришел к выводу, что такая большая светимость холодной звезды может объясняться только ее гигантскими размерами. Поверхность холодной звезды дает гораздо меньше света с квадратного километра, чем поверхность Солнца, но, с другой стороны, у такой звезды, как Бетельгейзе, квадратных километров поверхности могло быть несравненно больше, чем у Солнца.

И это более чем возместило бы относительно малую яркость каждого квадратного километра в отдельности. Поэтому такие звезды, как Бетельгейзе и Антарес, стали называться красными гигантами, а такие, как звезда Барнарда,— красными карликами.

Это было тем более любопытно, что промежуточных красных звезд, не гигантов и не карликов, как будто не существовало вовсе.

Это предположение Герцшпрунга, основанное на теоретических рассуждениях, было подтверждено результатами наблюдений. Американский физик немецкого происхождения Альберт Абрахам Майкельсон (1852—1931) изобрел в 1881 г. прибор, названный интерферометром.

Этот прибор, отмечавший мельчайшие изменения в картине усилений и ослаблений световых волн, позволял производить удивительно точные измерения. С его помощью удалось узнать о звездах то, что не показал бы ни один телескоп.

Даже ближайшие звезды так далеки от нас, что и в самые лучшие современные телескопы они видны только как светящиеся точки. Тем не менее попадающие в телескоп лучи данной звезды исходят не из одной точки ее поверхности. Один луч может приходить от ее западного края, а другой — от восточного. Эти лучи попадают в телескоп под некоторым углом друг к другу — углом, слишком малым для того, чтобы его можно было измерить обычными способами, но иногда достаточно большим, чтобы лучи “сталкивались” и складывались друг с другом.

Прибор Майкельсона позволил измерять результат такого сложения и определять угол между лучами, если он только не был ничтожно малым. Зная этот угол и расстояние до звезды, можно легко вычислить ее действительный диаметр.

Результаты были поразительными. Диаметр Бетельгейзе был измерен таким способом в 1920 г. и оказалось, что он равен 500 000 000 км. Он почти в 350 раз больше диаметра Солнца (1 390 600 км). Следовательно, поверхность Бетельгейзе примерно в 350X350, т. е. в 120 000 раз больше поверхности Солнца. Неудивительно, что светимость этой звезды гораздо больше светимости Солнца, хотя светимость каждого квадратного километра ее поверхности гораздо меньше.

Что касается объема Бетельгейзе, то он примерно в 40 000 000 раз больше объема Солнца. Если бы Бетельгейзе оказалась на месте Солнца, она заполнила бы все пространство далеко за пределы орбиты Марса. Да, это поистине красный гигант!

Опять же диаграмма Герцшпрунга – Рассела как и на первом изображении, но без отвлекающих цветов и надписей.

Какие бывают звезды?

Звезды различаются по температуре, возрасту, массе, размерам, плотности, светимости и химическому составу.

По температуре различают красные, желтые, белые, голубые. Среди них самые холодные красные: температура на поверхности такой звезды составляет не более 3000°С. Желтые звезды — к ним относится и наше Солнце — имеют температуру около 6000°С; белые «разогреты» от 10 000 до 20 000°С; голубоватые же звезды — самые горячие — раскалены более чем до 30 000°С (иногда до 100 000°С). Но это температура поверхности звезд. Внутри этих светил еще жарче — до 20 млн °С.

Белый карлик — звезда, имеющая большую массу (порядка солнечной) и малый радиус, близкий к радиусу Земли. Зато плотность белого карлика огромна: масса 1 см3 его вещества равняется 29 т

В зависимости от размеров звезды величают гигантами (самые большие) и карликами (наименьшие). Диаметр так называемых белых карликов может быть в 100 с лишним раз меньше диаметра Солнца, при этом масса таких звезд примерно равна солнечной. По численности такие карлики составляют от 3 до 10% звездного «населения» нашей галактики.

Чем больше звезды, тем реже они встречаются в пространстве. Особенно редки гиганты. Самыми крупными являются красные гиганты. К примеру, диаметр красной звезды Бетельгейзе из созвездия Ориона более чем в 300 раз превосходит диаметр Солнца. А красный Антарес в созвездии Скорпиона по диаметру в 450 раз больше нашего светила и даже превышает орбиту Марса.

Сравнение размеров звезд и планет

Одной из самых больших ныне известных звезд является красный сверхгигант Мю Цефея. Внутри этой звезды могли бы уместиться орбиты планет Солнечной системы вплоть до Юпитера. Мю Цефея, также известная как «гранатовая звезда Гершеля», является красным сверхгигантом и находится в созвездии Цефея.

Около половины звезд являются одиночными (как Солнце), остальные образуют двойные (например, Сириус), тройные и более сложные системы. Чем больше звезд в системе, тем реже она встречается. Известны звездные системы из семи членов, но более сложные пока не обнаружены.

Рождение и классификация голубых звезд гигантов

Появление всех звёзд происходит по одинаковому принципу. Огромное молекулярное облако под действием гравитации сжимается в шар до момента появления ядерного синтеза, спровоцированного внутренней температурой. Во время существования гигантское светило находится в состоянии внутренней борьбы, внешняя поверхность воздействует силой тяжести, а ядро — мощностью раскаленного вещества, которое стремится расшириться. В результате плавного выгорания водорода и гелия в центре простые звезды с огромной массой становятся сверхгигантскими.

Известна Йеркская классификация, отражающая спектр светимости. По ней звезды сверхгиганты относят к I классу, где данные объекты разделены на такие группы:

  • Ia – гипергиганты;
  • Ib – сверхгиганты.

По типу спектра в Гарвардской классификации такие светила входят в интервал от O до M. Голубой гигант относится к классам O, B, A, красные тела – K, M, промежуточные и мало изученные желтые – F, G.

Второй этап — тепловая неустойчивость

Каков же механизм превращения газа в звезду? Если бы здесь был сэр Максвелл, он сказал бы, что однородный газ будет находиться в состоянии неустойчивого теплового равновесия, а значит, в нем неизбежно будут появляться как плотные области (сгущения), так и более разреженные. Хотя область и называется плотной, это название весьма условно, поскольку газ в ней не так уж и плотен: буквально несколько десятков атомов в одном кубическом сантиметре. Сгущения в газе называются газовыми облаками, и мы наблюдаем их как туманности. Газовые облака двигаются, причем средняя их скорость составляет 8 км/с, а самые шустрые разгоняются до 80 км/с. И это не опечатка! Огромная масса газа диаметром в несколько парсек (1пк = 3,26 св. лет или 30 тысяч миллиардов километров) несется по гораздо более разреженной среде со скоростью, превышающей скорость наших космических кораблей. А так как в Галактике очень много таких облаков, то в один прекрасный момент (в галактических масштабах этот момент длится несколько тысяч лет) одно газовое облако сталкивается с другим. Возникшая от этого столкновения ударная волна заставляет газ в столкнувшихся облаках сильно уплотниться, давая начало следующему этапу рождения звезды.

Наука

Как спят слоны?

https://youtube.com/watch?v=8FT3TvLvatc

Прародители сверхновых

Считается, что большинство предшественников сверхновых типа II являются красными сверхгигантами, в то время как менее распространенные сверхновые типа Ib / c производятся более горячими звездами Вольфа – Райе, которые полностью потеряли большую часть своей водородной атмосферы. Почти по определению сверхгигантам суждено закончить свою жизнь насильственной смертью. Звезды, достаточно большие, чтобы начать сплавление элементов тяжелее гелия, похоже, не имеют никакого способа потерять достаточно массы, чтобы избежать катастрофического коллапса ядра, хотя некоторые из них могут коллапсировать, почти бесследно, в свои собственные центральные черные дыры.

Однако простые «луковичные» модели, показывающие, что красные сверхгиганты неизбежно превращаются в железное ядро, а затем взрываются, оказались слишком упрощенными. Прародителем необычной сверхновой типа II 1987A был синий сверхгигант, который , как считается, уже прошел через фазу жизни красного сверхгиганта, и теперь известно, что это далеко не исключительная ситуация. Сейчас много исследований сосредоточено на том, как голубые сверхгиганты могут взорваться как сверхновые и когда красные сверхгиганты могут выжить, чтобы снова стать более горячими сверхгигантами.

Межзвездные расстояния

Выражать расстояния между космическими телами в километрах неудобно. Это слишком мелкая единица измерения. Например, между Солнцем и ближайшей к нему звездой Проксима Центавра — 40 700 000 000 000 км.

Мы видим звезды лучистыми не потому, что они на самом деле такие, а из-за строения нашего глаза. Хрусталик имеет неоднородную волокнистую структуру и преломляет свет в виде лучей

Внутри Солнечной системы для измерения расстояний часто используют астрономическую единицу (а. е.). Одна астрономическая единица равна длине большой полуоси орбиты Земли. Это около 150 000 000 км. Расстояние до ближайшей звезды тогда можно записать как 270 000 а. е.

Но астрономическая единица тоже неудобна, поскольку расстояния между звездами обычно гораздо больше, чем между Солнцем и звездой Проксима Центавра. Для таких масштабов используют другие единицы: световой год и парсек. Световой год — это не время, а расстояние, проходимое светом за один земной год. В этом случае 270 000 а. е. записываются как 4,3 светового года.

Путь короче не стал, но звезда кажется как-то поближе. Большинство звезд, хорошо заметных невооруженным глазом, удалено на десятки и сотни световых лет.

Еще меньше это расстояние выглядит в парсеках (пк) — 1,32 пк (1 пк=3,26 светового года).

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector