Подробно о потухшем ядерном реакторе в окло
Содержание:
- Научные разработки в сфере атомной энергетики
- Защитные механизмы АЭС
- Атомная электростанция: принцип работы
- Атомные электростанции России
- Список атомных электростанций России имеет следующий вид:
- Реакторы из сферы химии: как работают и для чего их используют
- Начало работы реактора
- Ядерные реакторы на медленных и быстрых нейтронах
- Без мирного атома никак
- Естественные аналоги в природе
- Принцип работы АЭС
- Реакторы из сферы микробиологии: как работают и для чего их применяют
- Подходы к классификации
- Тип ядерного реактора на ЧАЭС
- Общая информация
Научные разработки в сфере атомной энергетики
Конечно, имеются недостатки и опасения, но при этом атомная энергия представляется самой перспективной.
Альтернативные способы получения энергии, за счёт энергии приливов, ветра, Солнца, геотермальных источников и др. в настоящее время имеют не высокий уровнем получаемой энергии, и её низкой концентрацией.
Необходимые виды получения энергии, имеют индивидуальные риски для экологии и туризма, например производство фотоэлектрических элементов, которое загрязняет окружающую среду, опасность ветряных станций для птиц, изменение динамики волн.
Ученые разрабатывают международные проекты ядерных реакторов нового поколения, например ГТ-МГР, которые позволят повысить безопасность и увеличить КПД АЭС.
Россия начала строительство первой в мире плавающей АЭС, она позволяет решить проблему нехватки энергии в отдалённых прибрежных районах страны.
США и Япония ведут разработки мини-АЭС, с мощностью порядка 10-20 МВт для целей тепло и электроснабжения отдельных производств, жилых комплексов, а в перспективе — и индивидуальных домов.
Уменьшение мощности установки предполагает рост масштабов производства. Малогабаритные реакторы создаются с использованием безопасных технологий, многократно уменьшающих возможность утечки ядерного вещества.
Производство водорода
Правительством США принята Атомная водородная инициатива. Совместно с Южной Кореей ведутся работы по созданию атомных реакторов нового поколения, способных производить в больших количествах водород.
INEEL (Idaho National Engineering Environmental Laboratory) прогнозирует, что один энергоблок атомной электростанции следующего поколения, будет производить ежедневно водород, эквивалентный 750000 литров бензина.
Финансируются исследования возможностей производства водорода на существующих атомных электростанциях.
Термоядерная энергетика
Ещё более интересной, хотя и относительно отдалённой перспективой выглядит использование энергии ядерного синтеза.
Термоядерные реакторы, по расчётам, будут потреблять меньше топлива на единицу энергии, и как само это топливо (дейтерий, литий, гелий-3), так и продукты их синтеза нерадиоактивны и, следовательно, экологически безопасны.
В настоящее время при участии России, на юге Франции ведётся строительство международного экспериментального термоядерного реактора ITER.
Защитные механизмы АЭС
Все атомные электростанции в обязательном порядке оснащаются комплексными системами безопасности, например:
- локализующие – ограничивают распространение вредоносных веществ в случае аварии, повлекшей выброс радиации;
- обеспечивающие – подают определённое количество энергии для стабильной работы систем;
- управляющие – служат для того, чтобы все защитные системы функционировали нормально.
Кроме того, реактор может аварийно остановиться в случае чрезвычайной ситуации. В этом случае автоматическая защита прервет цепные реакции, если температура в реакторе продолжит подниматься. Эта мера впоследствии потребует серьезных восстановительных работ для возвращения реактора в строй.
После того как в Чернобыльской АЭС произошла опасная авария, причиной которой оказалось несовершенство конструкции реактора, стали больше внимания уделять защитным мерам, а также провели конструкторские работы для обеспечения большей надежности реакторов.
Атомная электростанция: принцип работы
Каков принцип работы АЭС? Принцип работы АЭС базируется на цепной реакции деления атомов радиоактивного вещества – урана. Эта реакция происходит в активной зоне ядерного реактора.
Если не вдаваться в тонкости ядерной физики, принцип работы АЭС выглядит так: После пуска ядерного реактора из ТВЭЛов извлекаются поглощающие стержни, которые не дают урану вступить в реакцию.
Как только стрежни извлечены, нейтроны урана начинают взаимодействовать друг с другом.
Когда нейтроны сталкиваются, происходит мини-взрыв на атомном уровне, выделяется энергия и рождаются новые нейтроны, начинает происходить цепная реакция. Этот процесс выделяет тепло.
Тепло отдается теплоносителю. В зависимости от типа теплоносителя оно превращается в пар или газ, которые вращают турбину.
Турбина приводит в движение электрогенератор. Именно он по факту и вырабатывает электрический ток.
Если не следить за процессом, нейтроны урана могут сталкиваться друг с другом до тех пор, пока не взорвут реактор и не разнесут всю АЭС в пух и прах. Контролируют процесс компьютерные датчики. Они фиксируют повышение температуры или изменение давления в реакторе и могут автоматически остановить реакции.
Чем отличается принцип работы АЭС от ТЭС (теплоэлектростанций)?
Различия в работе есть только на первых этапах. В АЭС теплоноситель получает тепло от деления атомов уранового топлива, в ТЭС теплоноситель получает тепло от сгорания органического топлива (угля, газа или нефти). После того, как или атомы урана, или газ с углём выделили тепло, схемы работы АЭС и ТЭС одинаковы.
Атомные электростанции России
Балаковская АЭС
Расположена рядом с городом Балаково, Саратовской области, на левом берегу Саратовского водохранилища. Состоит из четырёх блоков ВВЭР-1000, введённых в эксплуатацию в 1985, 1987, 1988 и 1993 годах.
Балаковская АЭС — одна из четырёх крупнейших в России АЭС, одинаковой мощностью по 4000 МВт.
Ежегодно она вырабатывает более 30 миллиардов кВт•ч электроэнергии. В случае ввода в строй второй очереди, строительство которой было законсервировано в 1990-х, станция могла бы сравняться с самой мощной в Европе Запорожской АЭС.
Белоярская АЭС
Белоярская АЭС расположена в городе Заречный, в Свердловской области, вторая промышленная атомная станция в стране (после Сибирской).
На станции были сооружены четыре энергоблока: два с реакторами на тепловых нейтронах и два с реактором на быстрых нейтронах.
В настоящее время действующими энергоблоками являются 3-й и 4-й энергоблоки с реакторами БН-600 и БН-800 электрической мощностью 600 МВт и 880 МВт соответственно.
БН-600 сдан в эксплуатацию в апреле 1980 — первый в мире энергоблок промышленного масштаба с реактором на быстрых нейтронах.
БН-800 сдан в промышленную эксплуатацию в ноябре 2016 г. Он также является крупнейшим в мире энергоблоком с реактором на быстрых нейтронах.
Билибинская АЭС
Расположена рядом с городом Билибино Чукотского автономного округа. Состоит из четырёх блоков ЭГП-6 мощностью по 12 МВт, введённых в эксплуатацию в 1974 (два блока), 1975 и 1976 годах.
Вырабатывает электрическую и тепловую энергию.
Калининская АЭС
Калининская АЭС — одна из четырёх крупнейших в России АЭС, одинаковой мощностью по 4000 МВт.
Расположена на севере Тверской области, на южном берегу озера Удомля и около одноимённого города.
Состоит из четырёх энергоблоков, с реакторами типа ВВЭР-1000, электрической мощностью 1000 МВт, которые были введены в эксплуатацию в 1984, 1986, 2004 и 2011 годах.
4 июня 2006 года было подписано соглашение о строительстве четвёртого энергоблока, который ввели в строй в 2011 году.
Кольская АЭС
Кольская АЭС расположена рядом с городом Полярные Зори Мурманской области, на берегу озера Имандра.
Состоит из четырёх блоков ВВЭР-440, введённых в эксплуатацию в 1973, 1974, 1981 и 1984 годах.
Мощность станции — 1760 МВт.
Курская АЭС
Курская АЭС — одна из четырёх крупнейших в России АЭС, одинаковой мощностью по 4000 МВт.
Расположена рядом с городом Курчатов Курской области, на берегу реки Сейм.
Состоит из четырёх блоков РБМК-1000, введённых в эксплуатацию в 1976, 1979, 1983 и 1985 годах.
Мощность станции — 4000 МВт.
Ленинградская АЭС
Ленинградская АЭС — одна из четырёх крупнейших в России АЭС, одинаковой мощностью по 4000 МВт.
Расположена рядом с городом Сосновый Бор Ленинградской области, на побережье Финского залива.
Состоит из четырёх блоков РБМК-1000, введённых в эксплуатацию в 1973, 1975, 1979 и 1981 годах.
Мощность станции — 4 ГВт. В 2007 году выработка составила 24,635 млрд кВт•ч.
Нововоронежская АЭС
Расположена в Воронежской области рядом с городом Воронеж, на левом берегу реки Дон. Состоит из двух блоков ВВЭР.
На 85 % обеспечивает Воронежскую область электрической энергией, на 50 % обеспечивает город Нововоронеж теплом.
Мощность станции (без учёта Нововоронежской АЭС-2) — 1440 МВт.
Ростовская АЭС
Расположена в Ростовской области около города Волгодонск. Электрическая мощность первого энергоблока составляет 1000 МВт, в 2010 году подключен к сети второй энергоблок станции.
В 2001—2010 годах станция носила название «Волгодонская АЭС», с пуском второго энергоблока АЭС станция была официально переименована в Ростовскую АЭС.
В 2008 году АЭС произвела 8,12 млрд кВт-час электроэнергии. Коэффициент использования установленной мощности (КИУМ) составил 92,45 %. С момента пуска (2001) выработала свыше 60 млрд кВт-час электроэнергии.
Смоленская АЭС
Расположена рядом с городом Десногорск Смоленской области. Станция состоит из трёх энергоблоков, с реакторами типа РБМК-1000, которые введены в эксплуатацию в 1982, 1985 и 1990 годах.
В состав каждого энергоблока входят: один реактор тепловой мощностью 3200 МВт и два турбогенератора электрической мощностью по 500 МВт каждый.
Список атомных электростанций России имеет следующий вид:
- Балаковская АЭС, которая считается крупнейшей станцией на территории современной России. Эта станция работает на четырех энергетических блоках типа ВВЭР-100, которые были введены в эксплуатацию еще в 90-ых годах. Станция имеет надежную защиту в виде герметичного железобетонного слоя.
- Белоярская АЭС, которая названа в честь основателя атомной отрасли Курчатова. Уникальность данной станции заключается в применении энергоблоков различных типов. Два блока имеют реакторы АМБ, а один работает на реакторе типа БН-600. Доля вырабатываемой станцией энергии составляет 10% от количества, которую вырабатывают все атомные электростанции России, притом, что на настоящий момент эксплуатируется всего один блок, а два других законсервированы.
- Билибинская АЭС, являющаяся единственным источником электричества для Чукотского автономного округа и его столицы — города Анадырь. Атомные станции России на карте сконцентрированы преимущественно в Европейской части, и только Билибинская АЭС находится на северо-востоке страны. Система функционирования станции построена таким образом, что при малейших неполадках в работе одного из блоков не прерывается работа всего объекта.
- Калининская АЭС. Преимуществом данной станции является удачное географическое расположение, что дает возможность вырабатывать высоковольтную энергию. За выработку электричества на этой станции отвечает последовательность из трех реакторов типа ВЭР-1000.
- Кольская АЭС. Первая на территории станы атомная электростанция, которая была построена за Полярным кругом. В настоящий момент наблюдается спад потребления ресурсов, поэтому все энергоблоки станции находятся в режиме диспетчеризации.
- Курская АЭС. Данная крупная станция является важнейшим узлом всей энергетической системы страны, обеспечивая достаточное количество энергии для промышленных предприятий Курской области. Всего на станции эксплуатируется 4 энергоблока типа РБМК-1000, которые выдают мощность в 4 ГВт. Отличительной особенностью объекта является использование очищенной воды.
- Ленинградская АЭС. Эта станция является первой в России, на которой были применены самые мощные из современных реакторов — РБМК-1000. Территориально станция располагается на берегу финского залива возле небольшого города Сосновый бор.
- Нововоронежская АЭС является первой в стране станцией, на которой стали применяться новые реакторы типа ВВЭР. Производства энергии обеспечивается тремя очередями энергоблоков, что позволяет варьировать получаемую мощность в зависимости от потребностей.
- Ядерные станции на карте РФ в южной части представлены Ростовской АЭС, которая располагается недалеко от города Волгодонск. Особенностью станции является ее способность удовлетворить требования поточного производства. Работает станция на реакторах типа ВВЭР-1000.
- Смоленская АЭС является очень крупной станцией, для работы которой применяются реакторы РБМК-1000. По итогам 2010 года данный объект был признан самым лучшим в области безопасности.
Современное состояние атомной энергетики России позволяет говорить о наличии большого потенциала, который в обозримом будущем может реализоваться в создании и проектировании реакторов нового типа, позволяющих вырабатывать большие объемы энергии при меньших затратах.
Реакторы из сферы химии: как работают и для чего их используют
Химические реакторы имеют узкую специализацию. Ученые определили им место эксплуатации в химической, целлюлозной, фармацевтической, парфюмерной сфере, когда в лабораторных условиях изготавливается нужная продукция. Внутри химических реакторов происходят заданные реакции, следствием которых происходит кристаллизация, плавление, гомогенезация заданных в программу компонентов.
Таким образом, в разного рода науках научились использовать реакторы. Перед ними ставятся ранние задачи, но результат всегда один – надо на выходе получить продукт, необходимый для жизнедеятельности человечества. Законы химии, физики, биологии «запускают» реакторы и поддерживают их функционирование нужный период.
Начало работы реактора
В начальный момент времени после первой загрузки топливом, цепная реакция деления в реакторе отсутствует, реактор находится в подкритическом состоянии . Температура теплоносителя значительно меньше рабочей.
Для начала цепной реакции делящийся материал должен образовать критическую массу, — достаточное количество спонтанно расщепляющегося вещества в достаточно небольшом пространстве, условие, при котором число нейтронов, выделяющихся при делении ядер должно быть больше числа поглощенных нейтронов.
Это можно сделать, повысив содержание урана-235 (количество загруженных ТВЭЛОВ), либо замедлив скорость нейтронов, чтобы они не пролетали мимо ядер урана-235.
Вывод реактора на мощность осуществляется в несколько этапов.
С помощью органов регулирования реактивности реактор переводится в надкритическое состояние Кэф>1 и происходит рост мощности реактора до уровня 1-2 % от номинальной. На этом этапе производится разогрев реактора до рабочих параметров теплоносителя причем скорость разогрева ограничена. В процессе разогрева органы регулирования поддерживают мощность на постоянном уровне.
Затем производится пуск циркуляционных насосов и вводится в действие система отвода тепла. После этого мощность реактора можно повышать до любого уровня в интервале от 2 — 100 % номинальной мощности.
При разогреве реактора реактивность меняется, в виду изменения температуры и плотности материалов активной зоны. Иногда при разогреве меняется взаимное положение активной зоны и органов регулирования, которые входят в активную зону или выходят из нее, вызывая эффект реактивности при отсутствии активного перемещения органов регулирования.
Реактор ВВЭР 1000. 1 — привод СУЗ; 2 — крышка реактора; 3 — корпус реактора; 4 — блок защитных труб (БЗТ); 5 — шахта; 6 — выгородка активной зоны; 7 — топливные сборки (ТВС) и регулирующие стержни;
Ядерные реакторы на медленных и быстрых нейтронах
В ядерных реакторах на медленных нейтронах активная зона, кроме ядерного топлива, содержит замедлитель быстрых нейтронов, образующихся при цепной реакции деления атомных ядер.
Применяют замедлители (графит), а также органические жидкости и воду, которые одновременно могут служить и теплоносителем.
Если замедлителя в активной зоне нет, то основная часть деления ядер происходит под влиянием быстрых нейтронов с энергией больше 10 кэВ.
Реактор без замедлителя – реактор на быстрых нейтронах – может стать критическим лишь при использовании природного урана, обогащенного изотопом U до концентрации около 10%.
В активной зоне реактора на медленных нейтронах расположены тепловыделяющие элементы, содержащие смесь U и U и замедлитель, в котором нейтроны замедляются до энергии около 1 эВ.
Тепловыделяющие элементы (ТВЭЛы) представляют собой блоки из делящегося материала, заключенные в герметическую оболочку, слабо поглощающую нейтроны. За счет энергии деления тепловыделяющие элементы разогреваются и отражают энергию теплоносителю, который циркулирует в каналах.
Управление цепной реакцией осуществляется специальными управляющими стержнями, изготовленными из материалов, сильно поглощающих нейтроны (например, бор, кадмий). Изменяя количество и глубину погружения управляющих стержней, можно регулировать нейтронные потоки, а следовательно, интенсивность цепной реакции и выработку энергии.
Реакторы, в которых деление ядер производится в основном нейтронами с энергией больше 0,5 МэВ, называются реакторами на быстрых нейтронах. Реакторы, в которых большинство делений происходит в результате поглощения ядрами делящихся изотопов промежуточных нейтронов, называются реакторами на промежуточных (резонансных) нейтронах.
Без мирного атома никак
Мировая экономика немыслима без атомной энергетики. На атомных электростанциях вырабатывается одна десятая всей производимой на планете электроэнергии. Сегодня 192 атомные электростанции работают в 31 стране мира. Как правило, все они имеют по несколько энергоблоков – технологических комплексов оборудования для производства электроэнергии, имеющих в своем составе ядерный реактор. Общее количество таких энергоблоков в мире составляет 451.
На первом месте по количеству АЭС находятся США – 62, на втором Франция – 19, третье место у Японии – 17. Россия занимает пятое место по количеству атомных электростанций. Их у нас 10 с 37 энергоблоками. Общая мощность всех АЭС мира составляет около 392 ГВт.
Атомная энергетика имеет много плюсов. Ключевые – высокая рентабельность и отсутствие выбросов в атмосферу продуктов сгорания, как это происходит на тепловых электростанциях. Однако есть и серьезные минусы. В случае аварии на атомной электростанции продукты деления ядерного топлива, вырвавшиеся из реактора, могут надолго сделать непригодными для жизни большие территории, прилегающие к станции. Еще один минус – это проблема хранения и переработки отработанного ядерного топлива.
Естественные аналоги в природе
Ядерный реактор воспринимается в общественном сознании исключительно как продукт высоких технологий. Однако по факту первое такое устройство имеет природное происхождение. Оно было обнаружено в регионе Окло, что в центральноафриканском государстве Габон:
- Реактор был образован из-за подтопления урановых пород подземными водами. Они выступили как нейтронные замедлители;
- Тепловая энергия, выделяющаяся при распаде урана, превращает воду в пар, и цепная реакция останавливается;
- После падения температуры охлаждающей жидкости все повторяется вновь;
- Если бы жидкость не выкипала и не останавливала течение реакции, человечество бы столкнулось с новой природной катастрофой;
- Самоподдерживаемое деление ядер началось в этом реакторе около полутора миллиардов лет назад. За это время было выделено около 0,1 миллиона ватт выходной мощности;
- Подобное чудо света на Земле является единственным известным. Появление новых невозможно: доля урана-235 в природном сырье намного ниже уровня, необходимого для поддержания цепной реакции.
Принцип работы АЭС
Принцип работы атомной электростанции основан на действии ядерного (иногда называемого атомным) реактора – специальной объёмной конструкции, в которой происходит реакция расщепления атомов с выделением энергии.
Существуют различные виды ядерных реакторов:
- PHWR (также имеет название «pressurised heavy water reactor» – «тяжеловодный ядерный реактор»), используемый преимущественно на территории Канады и в городах Индии. В его основе используется вода, формула которой – D2O. Она выполняет функцию как теплоносителя, так и замедлителя нейтронов. Коэффициент полезного действия близится к 29%;
- ВВЭР (водо-водяной энергетический реактор). В настоящее время ВВЭР эксплуатируют только в СНГ, в частности, модель ВВЭР-100. Реактор имеет КПД равный 33%;
- GCR, AGR (графитоводный). Жидкость, содержащаяся в таком реакторе, выступает в роли теплоносителя. В данной конструкции замедлитель нейтронов – графит, отсюда и название. КПД составляет около 40%.
По принципу устройства реакторы также делят на:
- PWR (pressurised water reactor) – устроен так, что вода, находящаяся под определенным давлением, замедляет реакции и подает тепло;
- BWR (сконструирован таким образом, что пар и вода находятся в главной части устройства, не имея водяного контура);
- РБМК (канальный реактор, имеющий особенно большую мощность);
- БН (система работает за счет быстрого обмена нейтронами).
Устройство и структура атомной электростанции. Как работает АЭС?
Устройство АЭС
Типичная атомная электростанция состоит из блоков, внутри каждого из которых размещены различные технические приспособления. Самый значимый из таких блоков – комплекс с реакторным залом, обеспечивающий работоспособность всей АЭС. Он состоит из следующих устройств:
- реактора;
- бассейна (именно в нем хранят ядерное топливо);
- машины, перегружающие топливо;
- БЩУ (щит управления в блоках, с помощью него за процессом деления ядра могут наблюдать операторы).
Помимо прочего, имеется блок с бассейнами для отработанного топлива и специальные блоки, предназначенные для охлаждения (они называются градирнями). Кроме того, для охлаждения применяются распылительные бассейны и природные водоемы.
Принцип работы АЭС
На всех без исключения АЭС существует 3 этапа преобразования электрической энергии:
- ядерная с переходом в тепловую;
- тепловая, переходящая в механическую;
- механическая, преобразовывающаяся в электрическую.
Уран отдает нейтроны, вследствие чего происходит выделение тепла в огромных количествах. Горячая вода из реактора прокачивается насосами через парогенератор, где отдает часть тепла, и снова возвращается в реактор. Поскольку эта вода находится под большим давлением, она остается в жидком состоянии(в современных реакторах типа ВВЭР около 160 атмосфер при температуре ~330 °C). В парогенераторе это тепло передается воде второго контура, которая находится под гораздо меньшим давлением (половина давления первого контура и менее), поэтому закипает. Образовавшийся пар поступает на паровую турбину, вращающую электрогенератор, а затем в конденсатор, где пар охлаждают, он конденсируется и снова поступает в парогенератор. Конденсатор охлаждают водой из внешнего открытого источника воды (например, пруда-охладителя).
И первый и второй контур замкнуты, что снижает вероятность утечки радиации. Размеры конструкций первого контура минимизированы, что также снижает радиационные риски. Паровая турбина и конденсатор не взаимодействуют с водой первого контура, что облегчает ремонт и уменьшает количество радиоактивных отходов при демонтаже станции.
Реакторы из сферы микробиологии: как работают и для чего их применяют
Живем и часто не задумываемся, откуда берутся те или иные медицинские и лекарственные препараты. Кажется, что достаточно лишь заказать опытному фармацевту изготовление таблеток и микстур по рецепту, оплатить работу и лечиться себе на здоровье. Но это далеко не так, потому что в современной биотехнической промышленности используют реакторы, благодаря которым изготавливаются целые партии продуктов фармацевтики, важных вакцин, пищевых добавок, ферментных препаратов. Без биореакторов не обойтись, если надо выполнить согласно всем требованиям производство полисахоридов и нефтедеструкторов. Основные характеристики биологического реактора очень мощные, показательные, поэтому все процессы выполняются согласно установленной эффективной технической процедуре. Первым ученым, который внедрил биореакторы в промышленность стал микробиолог СССР М.Д. Утенов, добившись в ходе исследований убедительных положительных результатов.
Назовем основные технические характеристики биореактора и сферу его применения:
- Реактор микро-биологической сферы способен создавать оптимальные условия для культивирования клеток и полезных микроорганизмов, как основа для создания вакцин и медицинских синтетических препаратов.
- Благодаря наличию внутри реактора газовой, жидкостной, кислородной составляющих появляется возможность сформировать условия для дыхания, питания, метаболизма тех или иных микроорганизмов.
- Без биореактора невозможно качественно выполнить процесс микробиологического синтеза.
Подходы к классификации
Оснований для типологии реакторов может быть множество:
- По типу ядерной реакции. Деление (все коммерческие установки) или синтез (термоядерная энергетика, имеет распространение лишь в некоторых НИИ);
- По теплоносителю. В абсолютном большинстве случаев с этой целью используется вода (кипящая или тяжелая). Иногда используются альтернативные решения: жидкий металл (натрий, свинец-висмутовый сплав, ртуть), газ (гелий, углекислый газ или азот), расплавленная соль (фторидные соли);
- По поколению. Первое – ранние прототипы, которые не имели никакого коммерческого смысла. Второе – большинство ныне используемых АЭС, которые были построены до 1996 года. Третье поколение отличается от предыдущего лишь небольшими усовершенствованиями. Работа над четвертым поколением еще ведется;
- По агрегатному состоянию топлива (газовое пока существует только на бумаге);
- По целям использования (для производства электричества, пуска двигателя, производства водорода, опреснения, трансмутации элементов, получение нейронного излучения, теоретические и следовательские цели).
Тип ядерного реактора на ЧАЭС
На Чернобыльской АЭС было установлено четыре реактора РБКМ-1000. Аббревиатура РБМК – реактор большой мощности канальный. Цифра 1000 указывает мощность энергетической установки, которая способна генерировать 1000 мегаватт электроэнергии в час. Необходимо отметить, что ядерный реактор, кроме энергетической мощности имеет тепловую мощность выделения тепла в реакторе. Тепловая энергия составляет 3000 мегаватт. Используя эти два значения (значения тепловой и энергетической мощности) можно легко рассчитать коэффициент полезного действия ядерного реактора РБКМ–1000 – 31%.
Важной особенностью устройства РБМК является наличие каналов в активной зоне, по которым движется теплоноситель (вода). То есть, наличие каналов в толще замедлителя дает возможность двигаться теплоносителю, который нагреваясь превращается в пар, который в свою очередь вырабатывает электроэнергию
Такая схема генерации энергии позволила сконструировать мощные реакторы. Так, активная зона РБМК имеет вид вертикального цилиндра высотой 7 метров, а диаметр 11,8 метров. Весь внутренний объем реактора заполнен графитовыми блоками размерами 25x25x60 см3. Общий вес графита в реакторе составляет 1850 тонн.
Графитовые блоки имеют в центре цилиндрическое отверстие, через которое проходит канал с водой, которая является теплоносителем. Графитовые блоки, которые находятся на периферии реактора отверстий и каналов не имеют. Эти блоки играют роль отражателя. Толщина этого слоя один метр.
Графитовая кладка окружена цилиндрическим металлическим баком с водой. Он играет роль биологической защиты. Графит опирается на плиту, которая состоит из металлоконструкций, а сверху графит также накрыт подобной плитой. Верхняя плита, для защиты от излучений, накрыта дополнительным настилом.
Общая информация
Новости
26 Августа 2021Генеральный директор Росэнергоатома Андрей Петров посетил Билибино
Генеральный директор АО «Концерн Росэнергоатом» Андрей Петров посетил город Билибино с рабочим визитом, в ходе которого провел рабочие совещания на Билибинской АЭС, в администрации Билибинского района, встретился с персоналом атомной станции и ответил на вопросы работников, а также посетил объекты городской инфраструктуры.
4 Августа 2021Билибинская АЭС в июле выработала 6,4 тыс. кВтч электроэнергии
Билибинская АЭС работает в замкнутом Чаун-Билибинском энергоузле
Новости
1 — 2 из 178
Начало | Пред. |
1
|
След. |
Конец
БИЛИБИНСКАЯ АЭС
Место расположения: вблизи г. Билибино (Чукотский АО)
Тип реактора: ЭГП-6
Количество энергоблоков: 4
Билибинская АЭС — это уникальное сооружение в центре Чукотки, обеспечивающее жизнедеятельность горнорудных и золотодобывающих предприятий Чукотки. Работает в изолированной энергосистеме в режиме регулирования нагрузки.
Проектом Билибинской АЭС предусмотрена генерация четырьмя энергоблоками электрической мощности 48 МВт (4×12 МВт) с суммарным тепловым отбором 66 Гкал/ч (4×16,5 Гкал/ч), при этом максимально возможный отпуск тепла в зимние месяцы может составлять 100 Гкал/ч при ограничении электрической мощности.
Билибинская АЭС производит 80% электроэнергии, вырабатываемой в изолированной Чаун-Билибинской энергосистеме, являясь безальтернативным источником теплоснабжения г. Билибино.
Условия сооружения, работы и обслуживания, а также специфика района размещения Билибинской АЭС предопределили следующие требования к реакторной установке и ее оборудованию:
- повышенная надежность в работе в сочетании с максимальной простотой обслуживания и управления;
- повышенная защищенность реакторной установки от повреждений в аварийных ситуациях;
- систематическая работа реакторной установки в режиме переменных нагрузок;
- блочность с обеспечением оптимальных весогабаритных характеристик поставляемого оборудования, обеспечивающая сведение доделочных и монтажных работ на объекте до минимума.
Тепловая мощность реакторной установки была выбрана с учетом условия, что электрическая мощность одного энергоблока в связи с малой общей мощностью ЧБЭУ не должна превышать 12 МВт. Внезапное отключение такого блока не вызывает «развала» энергосистемы. С учетом теплофикационных отборов пара необходимая паропроизводительность реакторной установки была определена в 95,5 т/ч при температуре питательной воды 107°С, что соответствует тепловой мощности реакторной установки 62 МВт.
В результате анализа особенностей конструкции, технико-экономических показателей и опыта эксплуатации было принято решение о применении на Билибинской АЭС в составе реакторных установок канальных водографитовых реакторов с трубчатыми твэлами на основе совершенствования конструкций и режимов теплосъема прототипов – реакторов первой АЭС (в г. Обнинск) и первой очереди Белоярской АЭС. Условное наименование реактора – ЭГП-6 (Энергетический Гетерогенный Петлевой реактор с 6-ю петлями циркуляции теплоносителя).
Установленная электрическая мощность Билибинской АЭС – 48 МВт при одновременном отпуске тепла потребителям до 67 Гкал/ч. При снижении температуры воздуха до –50°С АЭС работает в теплофикационном режиме и развивает теплофикационную мощность 100 Гкал/ч при снижении генерируемой электрической мощности до 38 МВт.
Расстояние до города-спутника (Билибино) — 4,5 км; до административного центра округа (г. Анадырь) — 610 км.
НОМЕР ЭНЕРГОБЛОКА | ТИП РЕАКТОРА | УСТАНОВЛЕННАЯ МОЩНОСТЬ, М ВТ | ДАТА ПУСКА |
---|---|---|---|
2 | ЭГП-6 | 12 | 30.10.1974 |
3 | ЭГП-6 | 12 | 22.12.1975 |
4 | ЭГП-6 | 12 | 27.12.1976 |
Суммарная установленная мощность 36 МВТ |