Перспективы развития ядерной энергетики через термоядерный реактор

Содержание:

Таблица 14 — Производство, передача и распределение электроэнергии в 2010 г. в расчете на душу населения, млн. руб./чел.

Регион РФ

Численность населения в 2010 г., тыс. чел.

Производство, передача и распределение электроэнергии в 2010 г., млн руб.

Производство, передача и распределение электроэнергии в 2010 г. в расчете на душу населения, млн руб./чел.

Российская Федерация

142 905

2 222 096

15 550,0

Центральный федеральный округ

38 438

696 166

18 129,3

Северо-Западный федеральный округ

13 584

221 978

16 321,9

Южный федеральный округ

13 857

147 304

10 674,2

Северо-Кавказский федеральный округ

9 497

63 254

6 658,3

Приволжский федеральный округ

29 900

402 654

13 466,7

Уральский федеральный округ

12 083

322 629

26 663,5

Сибирский федеральный округ

19 254

260 856

13 586,2

Республика Алтай

206

746

3 621,3

Республика Бурятия

973

8 937

9 184,9

Республика Тыва

308

1 881

6 107,2

Республика Хакасия

532

9 670

18 176,7

Алтайский край

2 419

18 062

7 466,7

Забайкальский край

1 107

8 110

7 326,1

Красноярский край

2 828

47 893

16 935,3

Иркутская область

2 429

52 423

21 582,1

Кемеровская область

2 763

50 881

18 415,1

Новосибирская область

2 666

33 545

12 582,5

Омская область

1 977

15 044

7 609,5

Томская область

1 046

13 666

13 065,0

Дальневосточный федеральный округ

6 292

107 254

17 046,1

Каковы перспективы развития ядерной энергетики?

После техногенной катастрофы, случившейся в Чернобыле на атомной станции (1986 г.), во всем мире наблюдалось резкое снижение выработки электричества с помощью атомных установок. Только к 2000 году развитие ядерной энергетики в России и мире существенно продвинулось вперед.

Объяснить такое положение просто – потребление человечеством энергии постоянно растет. Хотя проводятся работы по нахождению, и даже реализации альтернативных источников, атомная энергетика по прежнему остается наиболее «работоспособной». КПД использования АЭС сегодня является самым высоким среди всех возможных способов получения энергии. И это притом, что активно эксплуатируются солнечные и водные источники (солнечные батареи, гидроэлектростанции).

Баланс разных источников энергии меняется незначительно

За последние 20 лет объемы чистой энергии увеличились в два раза. Это энергия, полученная из экологически чистых источников — гидроэлектроэнергия, атомная, солнечная, ветровая, геотермальная, приливная, энергия биомассы. Однако ее доля в общем объеме добытой энергии осталось прежней и даже немного сократилась — с 36% в 1999 году до 35% в 2018 году.

Дело в том, что индустрия ископаемого топлива развивается быстрее индустрии чистой энергии. Многие бедные страны все еще используют дрова, навоз и уголь в качестве основного топлива.

Доля альтернативных возобновляемых источников за последние 20 лет росла — с 1% до 9% в 2018 году, а атомные электростанции, наоборот, закрывались — доля этого источника энергии сократилась с 17% до 10% за тот же период.

Солнечная и ветряная энергия нестабильна, ее можно получать только 10—30% времени, когда достаточно светит солнце и дует ветер. А больницам, домам, городам и заводам энергия нужна постоянно. И хотя в последнее время аккумуляторы существенно улучшились, они не так эффективны, как электрическая сеть.

Каждый раз, заряжая и разряжая аккумулятор, мы теряем около 20-40% энергии.

Межправительственный комитет ООН по вопросам климата (IPCC) изучил содержание CO2 во всех видах топлива. Атомная энергетика оказалась одной из самых экологически чистых. При этом атомная электростанция может быть задействована 92% времени.

Торий как альтернатива урану

Основной минерал, содержащий торий, — это монацит, который содержит редкие земли. Поэтому, когда мы говорим о тории как о топливе для будущей энергетики, как о следующем этапе развития атомной энергетики, речь, естественно, пойдет о комплексной переработке монацитового сырья и разделении редких земель — это существенным образом делает применение тория коммерчески более экономичным и привлекательным. Здесь существует очень серьезный потенциал для развития и энергетики, и экономики, и горнодобывающей промышленности. Торий в России есть в виде монацитовых песков. Эта технология должна быть промышленно освоенной, опробованной и, самое главное, рентабельной. В лаборатории можно делать все.

Проблема поиска месторождений тория сходна с проблемой поиска месторождений редкоземельных металлов — его способность к концентрации слабая, и торий весьма неохотно собирается в сколь-либо значительные залежи, являясь очень рассеянным элементом земной коры. В небольших количествах торий присутствует в граните, грунтах и почве. Обычно отдельно торий не добывается, в качестве побочного продукта его извлекают при добыче редкоземельных элементов или урана. Во многих минералах, в том числе и в монаците, торий легко замещает атом редкоземельного элемента, что и объясняет сродство тория с редкими землями.

Торий (Thorium), Th — химический элемент III группы Периодической системы, первый член группы актиноидов. В 1828 году, анализируя редкий минерал, найденный в Швеции, Йёнс Якоб Берцелиус обнаружил в нем окись нового элемента. Этот элемент был назван торием в честь всемогущего скандинавского божества Тора (Тор — коллега Марса и Юпитера, бог войны, грома и молнии). Получить чистый металлический торий Берцелиусу не удалось. Чистый препарат тория был получен лишь в 1882 году другим шведским химиком, первооткрывателем скандия Ларсом Нильсоном. Радиоактивность тория была открыта в 1898-м независимо друг от друга одновременно Марией Склодовской-Кюри и Гербертом Шмидтом.

Прежний вектор — с новым мировоззрением

Атомная отрасль Советского Союза, а сейчас — Российской Федерации, — всегда отвечала на главные вызовы человечества. Сейчас мы, конечно, совсем другие. Наша продуктовая линейка, набор задач очень сильно изменились, расширились — мы глобальная компания, работающая в десятках стран. Ну и, понятно, становясь глобальной компанией, мы смотрим на глобальную повестку.

Мне показалось логичным использовать формулировки целей устойчивого развития в качестве вектора. Более того, в новой стратегии «Росатома» то, к чему мы будем идти ближайшие десять лет — участие в реализации целей устойчивого развития, — прописано как стратегическая цель.

Экологические проекты — продукт и мировоззрение

После долгой дискуссии в правительстве нам поручили создать во всей стране систему работы с промышленными отходами первого и второго класса опасности — это самые зловредные отходы. Их и накоплено огромное количество, и их продолжают производить.

Поэтому мы, с одной стороны, создаем заводы по переработке наработанного наследия и новых объемов этих отходов, но вместе с тем разрабатываем технологии их сокращения.

Это важная и большая работа. Все, что связано с экологией и экологическими проектами, за последние три года стало и продуктом, и частью мировоззрения. И в будущем этот тренд будет только развиваться.

Больше информации и новостей о том, как «зеленеет» бизнес, право и общество в нашем Telegram-канале. Подписывайтесь.

выгода

Высокая плотность энергии

Уран — это элемент, который обычно используется на атомных станциях для производства электроэнергии. Это свойство хранить огромное количество энергии.

Один грамм урана равен 18 литрам бензина, а один килограмм дает примерно ту же энергию, что и 100 тонн угля (Castells, 2012).

Дешевле, чем ископаемое топливо 

В принципе, стоимость урана, кажется, намного дороже, чем нефть или бензин, но если принять во внимание, что для выработки значительного количества энергии требуются лишь небольшие количества этого элемента, в конечном итоге стоимость становится ниже, чем это ископаемого топлива

доступность 

Атомная электростанция обладает способностью работать постоянно, 24 часа в сутки, 365 дней в году, чтобы снабжать город электричеством; это благодаря периоду заправки это каждый год или 6 месяцев в зависимости от завода.

Другие виды энергии зависят от постоянного запаса топлива (например, угольные электростанции) или периодически или ограничены климатом (например, возобновляемые источники).

Он выделяет меньше парниковых газов, чем ископаемое топливо

Атомная энергия может помочь правительствам выполнить свои обязательства по сокращению выбросов парниковых газов. Процесс эксплуатации на атомной станции не выделяет парниковых газов, поскольку не требует использования ископаемого топлива..

Тем не менее, выбросы происходят в течение всего жизненного цикла установки; строительство, эксплуатация, добыча и переработка урана и демонтаж АЭС. (Sovacool, 2008).

Из наиболее важных исследований, проведенных для оценки количества CO2, выделяемого в результате ядерной деятельности, среднее значение составляет 66 г CO2e / кВтч. Это значение выбросов больше, чем у других возобновляемых ресурсов, но все же ниже, чем у ископаемых видов топлива (Sovacool, 2008).

Не хватает места

Атомной установке требуется мало места по сравнению с другими видами энергетической деятельности; для установки ректора и градирен требуется лишь относительно небольшой участок земли.

Напротив, для деятельности в области ветровой и солнечной энергии потребовалась бы большая земля для производства той же энергии, что и для атомной электростанции, в течение всего срока ее полезного использования.

Создает мало отходов

Отходы, образующиеся на атомной электростанции, чрезвычайно опасны и вредны для окружающей среды. Тем не менее, количество относительно мало по сравнению с другими видами деятельности, и используются адекватные меры безопасности, которые могут оставаться изолированными от окружающей среды, не представляя никакого риска.

Технология все еще в разработке

Есть еще много нерешенных проблем, связанных с атомной энергией. Однако в дополнение к делению существует еще один процесс, называемый ядерным синтезом, который включает в себя соединение двух простых атомов вместе с образованием тяжелого атома..

Развитие ядерного синтеза направлено на использование двух атомов водорода для производства одного из гелия и генерации энергии, это та же самая реакция, которая происходит на солнце.

Для осуществления ядерного синтеза требуются очень высокие температуры и мощная система охлаждения, которая создает серьезные технические трудности и все еще находится на стадии разработки..

В случае его реализации это будет означать более чистый источник, поскольку он не будет производить радиоактивные отходы, а также будет генерировать гораздо больше энергии, чем в настоящее время производится путем деления урана..

Сегодняшние реалии для ядерной энергетики

Современные перспективы развития ядерной энергетики не слишком отличаются от тех, какие были еще в 1954 году (запуск первой советской АЭС). На данный момент только с помощью этого способа получения энергии можно обеспечить потребности человечества.

Некоторые скажут, что активно ведутся разработки по поиску и эксплуатации альтернативных источников. Безусловно, таковое имеет место быть. Ученые, например, давно заметили, насколько полезными могут быть природные источники – солнце и вода. Однако простые расчеты получаемого из солнечных лучей тепла дают однозначный вывод – этого количества энергии человечеству на все его нужды просто не хватит.

Такие же выводы имеются и для использования гидроэлектростанций. Хотя во многих случаях действительно реально и даже полезно переходить на альтернативные источники. Например, для обеспечения электричеством:

  • жилых секторов (частные и многоквартирные дома);
  • мини-заводов;
  • предприятий, организаций;
  • ферм и подобного.

К сожалению, запасы ядерной энергии заканчиваются. Ученые провели расчеты и получили настораживающие данные: даже с использованием энергосберегающих устройств, запасов имеющейся энергии хватить для нужд всего человечества только на 100 лет.

Такие перспективы ядерной энергетики сложно назвать радужными. Некоторые могут задаться вопросом: почему так происходит, если технический прогресс движется вперед «семимильными шагами»? Ответ довольно прост и буквально лежит на поверхности.

Почему энергии не хватит?

Все дело в том, что добыча энергии с помощью АЭС требует использования иных энергоносителей, в частности – газа. Не секрет для современного человека, что залежи природного газа неуклонно сокращаются. Человечество настолько «прожорливо», что недра Земли просто не успевают пополняться. Кроме того, следует учитывать и нынешнюю стоимость этого энергоносителя.  Она является довольно высокой.

Если говорить о России, состояние многих АЭС является если не совсем плачевным, то очень близким к нему. На переоснащение, переоборудование, элементарный ремонт и постоянное обслуживание требуются финансы, и немалые. Технически устаревшие станции просто не в силах выдавать те масштабы, которые необходимы для человечества (хотя бы его части). И не смотря на это, Россия занимает лидирующие позиции в мире по добыче ядерной энергии.

Получается, в других странах ситуация с АЭС еще сложнее? Нет, это не соответствует действительности, о чем несложно догадаться. Но только на территории РФ находятся такие объемные залежи природного газа. Проще говоря, Европа не имеет возможности добывать больше атомной энергии просто потому, что у нее нет для этого достаточного количества энергоносителей.

Ядерная энергетика на данный момент является единственной возможность удовлетворять «аппетиты» человечества по количеству потребляемой энергии. К сожалению, перспективы развития ее слишком туманны. Хотя, многие страны заявляют о своих намерениях повышать уровень выработки энергии с помощью АЭС. Вопрос только в том, где они собираются добывать для этого газ?

Таблица 15 — Коэффициент душевого производства электроэнергии по регионам РФ в 2010 г.

Регион РФ

Численность населения в 2010 г., тыс. чел.

Удельный вес населения региона в общей численности населения страны, %

Производство, передача и распределение электроэнергии в 2010 г., млн руб.

Удельный вес производства электроэнергии региона в соответствующей структуре отрасли страны, %

Коэффициент душевого производства электроэнергии по регионам РФ

Российская Федерация

142 905

100

2 222 096

100

Центральный федеральный округ

38 438

26,8

696 166

31,32

1,17

Северо-Западный федеральный округ

13 584

9,5

221 978

9,98

1,05

Южный федеральный округ

13 857

9,6

147 304

6,62

0,69

Северо-Кавказский федеральный округ

9 497

6,6

63 254

2,84

0,43

Приволжский федеральный округ

29 900

20,9

402 654

18,12

0,86

Уральский федеральный округ

12 083

8,4

322 629

14,51

1,73

Сибирский федеральный округ

19 254

13,4

260 856

11,73

0,87

Республика Алтай

206

0,14

746

0,03

0,21

Республика Бурятия

973

0,68

8 937

0,4

0,58

Республика Тыва

308

0,21

1 881

0,08

0,38

Республика Хакасия

532

0,37

9 670

0,43

1,16

Алтайский край

2 419

1,69

18 062

0,81

0,48

Забайкальский край

1 107

0,77

8 110

0,36

0,46

Красноярский край

2 828

1,97

47 893

2,15

1,1

Иркутская область

2 429

1,69

52 423

2,35

1,39

Кемеровская область

2 763

1,93

50 881

2,28

1,18

Новосибирская область

2 666

1,86

33 545

1,5

0,81

Омская область

1 977

1,38

15 044

0,67

0,48

Томская область

1 046

0,73

13 666

0,61

0,83

Дальневосточный федеральный округ

6 292

4,4

107 254

4,82

1,09

Предпосылки развития атомной энергетики

    Россия была, есть и будет одной из ведущих энергетических держав мира. И это не только потому, что в недрах страны находится 12% мировых запасов угля, 13% нефти и 36% мировых запасов природного газа, которых достаточно для полного обеспечения собственных потребностей и для экспорта в сопредельные государства. Россия вошла в число ведущих мировых энергетических держав, прежде всего, благодаря созданию уникального производственного, научно-технического и кадрового потенциала топливно-энергетического комплекса (ТЭК). #1

    Но экономический кризис последних лет существенным образом затронул и этот комплекс. Производство первичных энергоресурсов в 1993 г. составило 82% от уровня 1990 и продолжало падать. Уменьшение потребления топлива и энергии, обусловленное общим экономическим спадом, временно облегчило задачу энергообеспечения страны, хотя в ряде регионов пришлось вынужденно ограничивать потребление энергии. Отсутствие необходимых инвестиций не позволило в 90-х годах компенсировать естественное выбытие производственных мощностей и обновлять основные фонды, износ которых в отраслях ТЭК колеблется в пределах 30-80%. В соответствии с нормами безопасности требуют реконструкции и до половины АЭС. #9

    Следует заметить, что в 1981-1985 гг. среднегодовой ввод мощностей в электроэнергетике был 6 млн. кВт в год, а в 1995 г. — только 0,3 млн. кВт. В 1995 году в России произведено 860 млрд. кВт\час, а в 1996 г. в связи со снижением спроса и износом установленного на электростанциях оборудования — 840 млрд.. кВт\час.

   Производство электроэнергии на электростанциях России (млрд. Квт-ч)

1990

1995

2000

2005

ВСЕГО

1082

860

922

1020

ГЭС и ГАС

167

177

166

180

КЭС

397

252

242

249

ТЭЦ

400

332

392

457

АЭС

118

99

122

134

                                     Таблица 1 #3

    Доля России в объёме мирового производства электроэнергии составляла в 1990 г 8,2%, а в 1995 г сократилась до 7,6%.

    В 1993 году по производству электроэнергии на душу населения Россия занимала 13-е место в мире (6297 кВт\ч).

    В 1991-1996 гг. электропотребление в России снизилось более чем на 20%, в том числе в 1996 г — на 1%. В 1997 г впервые  в 90-е годы ожидается рост производства электроэнергии.

В начале 90-х годов установленные энергетические мощности России превышали 7% мировых. В 1995 г установленная мощность электроэнергетики России составляла 215,3 млн. кВт, в том числе доля мощностей ТЭС — 70%, ГЭС — 20% и АЭС — 10%.

В 1992-1995 гг. было введено 66 млн. кВт генерирующих мощностей. В настоящее время 15 млн. кВт оборудования ТЭС выработали ресурс. В 2000 году таких мощностей будет уже 35 млн. кВт и в 2005 году — 55 млн. кВт. К 2005 году предельного срока эксплуатации достигнут агрегаты ГЭС мощностью 21 млн. кВт (50% мощностей ГЭС России). На АЭС в 2001-2005 гг. будут выведены из эксплуатации 6 энергоблоков общей мощностью 3,8 млн. кВт.

    По оценкам экспертов в настоящее время на 40% электростанций России используется устаревшее оборудование.Если не будут приняты меры по обновлению генерирующего оборудования, то динамика его старения к 2010 году будет выглядеть следующим образом: (тыс. млн. кВт)

1995 г

2000 г

2005 г

20010 г

ВСЕГО

17,0

49,3

83,3

108,5

ТЭС

14,2

35,3

55,1

75,1

ГЭС

2,8

14,0

24,0

25,0

АЭС

3,8

8,4

                                       Таблица 2    #3

В этих условиях для обеспечения прогнозируемого спроса на электрическую энергию и мощность потребуется значительная реконструкция действующих, а затем и строительство новых электростанций. Но какой вид энергии самый экономичный, безопасный и экологически чистый? На развитие какой отрасли направить основные средства? На сегодняшний день при выборе источника электроэнергии нельзя не отметить актуальность такого фактора, как ограниченность источников энергии.

Виды альтернативных источников энергии

1. Солнечная энергия

Солнце — главный источник энергии на Земле, ведь около 173 ПВт (или 173 млн ГВт) солнечной энергии попадает на нашу планету ежегодно, а это более чем в 10 тыс. раз превышает общемировые потребности в энергии. Фотоэлектрические модули на крыше или на открытых территориях преобразуют солнечный свет в электрическую энергию с помощью полупроводников — в основном, кремния. Солнечные коллекторы вырабатывают тепло для отопления и производства горячей воды, а также для кондиционирования воздуха.

Солнечные панели могут вырабатывать энергию и в пасмурную погоду, и даже в снегопад. Для наибольшей эффективности их стоит устанавливать под определенным углом — чем дальше от экватора, тем больше угол установки панелей.

Съедобная упаковка и солнечный парус: новинки космических эко-технологий

2. Энергия ветра

Использование ветра в качестве движущей силы — давняя традиция. Ветряные мельницы использовались для помола муки, лесопильных работ) и в качестве насосной или водоподъемной станции. Современные ветрогенераторы вырабатывают электроэнергию за счет энергии ветра. Сначала они превращают кинетическую энергию ветра в механическую энергию ротора, а затем в электрическую энергию.

Ветроэнергетика является одной из самых быстроразвивающихся технологий возобновляемой энергетики. По последним данным IRENA, за последние два десятилетия мировые мощности по производству энергии ветра на суше и на море выросли почти в 75 раз — с 7,5 ГВт в 1997 году до примерно 564 ГВт к 2018 году.

3. Энергия воды

Еще в древнем Египте и Римской империи энергия воды использовалась для привода рабочих машин, в том числе мельниц. В средние века водяные мельницы применялись в Европе на лесопильных и целлюлозно-бумажных предприятиях. С конца XIX века энергию воды активно используют для получения электроэнергии.

4. Геотермальная энергия

Геотермальная энергия использует тепло Земли для производства электричества. Температура недр позволяет нагревать верхние слои Земли и подземные водоемы. Извлекают геотермальную энергию грунта с помощью мелких скважин — это не требует больших капиталовложений. Особенно эффективна в регионах, где горячие источники расположены недалеко к поверхности земной коры.

5. Биоэнергетика

Биоэнергетика универсальна. Тепло, электричество и топливо могут производиться из твердой, жидкой и газообразной биомассы. При этом в качестве возобновляемого сырья используются отходы растительного и животного происхождения.

Энергия из спирта и навоза: преимущества и недостатки биотоплива

6. Энергия приливов и отливов

Приливы и волны — еще один способ получения энергии. Они заставляют вращаться генератор, который и отвечает за выработку электричества. Таким образом для получения электроэнергии волновые электростанции используют гидродинамическую энергию, то есть энергию, перепад давления и разницу температур у морских волн. Исследования в этой области еще ведутся, но специалисты уже подсчитали — только побережье Европы может ежегодно генерировать энергии в объеме более 280 ТВт·ч, что составляет половину энергопотребления Германии.

Как устроена самая мощная в мире приливная турбина

Вопрос времени

Ученые, которые всерьез занимаются реакторами на быстрых нейтронах, совершенно четко говорят, что реальный пуск запланирован на 2030 год. Раньше никто ничего не планирует. Проблем куча. Расплавленный свинец — агрессивная жидкость. Течение свинца в трубках охлаждения — вопрос вопросов: что происходит на границе раздела фаз, какие особенности граничных слоев, как меняются массоперенос и теплоперенос, вопросы, вопросы, вопросы. Дело в том, что граничные слои обладают совершенно другими физико-химическими свойствами, там совсем другие коэффициенты массопереноса, теплопереноса и т. д. Свинец должен быть определенного качества, с нужным содержанием кислорода. Вопросов много. Есть ли на эти вопросы ответы? Не знаю. Нужны цифры, расчеты.

Что касается тория, то все зависит от того, как мы это организуем, как конструктивно все это оформим, какая логистика и кто будет управлять проектом. Если мы сумеем это грамотно сделать, подберем специалистов, увлеченных идеей ториевой энергетики, выделим финансирование, специальный исследовательский реактор только для этих целей, с наработкой топлива, я думаю, мы уложимся в практический результат за достаточно сжатые сроки, как было в сороковые–пятидесятые годы. В лабораториях уже проделана значительная часть работ по физике активной зоны, по переработке монацита с селективным выделением тория и получением редких земель. Надо все, что сделано раньше, аккумулировать, проанализировать, собрать вместе в рамках рабочей группы по развитию ториевой энергетики. И работать.

Выводы

Проведенный анализ показывает, что ВИЭ являются наиболее привлекательными технологиями производства электроэнергии для обеспечения устойчивого безуглеродного развития в мире. При этом возникает ряд проблем технологического и экономического характера, которые возможно преодолеть только на основе системного подхода с использованием дополнительных технологий, принципиально новых подходов к управлению и регулированию энергетическими рынками и сложными энергетическими системами (в том числе, при переходе от преимущественно централизованных к преимущественно распределённым системам). Это, в свою очередь, требует дополнительных затрат на развитие энергетической инфраструктуры. В складывающихся условиях у атомной энергетики есть очень неплохие перспективы для развития как в странах с развитой экономикой, так и в развивающихся странах. Она может выступить в качестве дополнения к энергетике на основе ВИЭ. Россия, являясь одним из лидеров в области атомной энергетики, обладает рядом конкурентных преимуществ в условиях ужесточения требований и взятых на себя обязательств в области защиты окружающей среды и борьбы с изменениями климата.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector