К какому типу галактик относится млечный путь?

Класс и общее строение

Наша галактика — типичная спиральная галактика с перемычкой, SBbc. Сегодня считается, что спиральные галактики составляют 55% от числа всех галактик Вселенной. А галактики с перемычкой являются наиболее распространенным подтипом — это две третьих всех спиральных галактик. Спирально-перемычечные «звездные острова» ученые считают достаточно молодым типом галактик. Со временем, когда ресурсы галактики исчерпываются, перемычка исчезает.

Снимок центра Млечного Пути

А в чем вообще суть этой перемычки, и как она выглядит? Давайте вкратце разберемся, как построен наш Млечный Путь. Ибо его составные части — единственные вещи относительно галактик, в которых астрономы более-менее уверены.

  • Вы уже точно знаете, что внутри Млечного Пути находится ядро — центральная часть галактики, сосредоточение ее массы, вокруг которой располагаются все остальные части «звездного острова». Во Млечном Пути его образует группа звезд и туч пыли, которые на большой скорости движутся вокруг сверхмассивной черной дыры Стрелец А*. Ядро нашей галактики принадлежит к активным, поскольку выделяет больше энергии, чем суммарно все составляющие его звезды.
  • Дальше идет балдж (от англ. «вздутие, выпуклость») — сферическая объемная оболочка центра Млечного Пути. Его составляют крупные звезды-гиганты, старые светила и раскаленные газы, которые вращаются вокруг ядра с громадными скоростями. Балдж — самая концентрированная и наиболее яркая часть не только нашей, но и любой другой галактики. Но мы почти его не видим, поскольку он закрыт он нас рукавами Млечного Пути и собственной облачной оболочкой.

Центр, балдж и гало

  • По обе стороны от балджа отходит перемычка — мостик, к которому крепятся галактические рукава Млечного Пути. Часто ее не выделяют в отдельный компонент: без рукавов на фоне, балдж сливается с перемычкой, оставляя только небольшое утолщение в центре. Перемычку можно сравнить с оживленным и бурным руслом реки. Здесь постоянно нагнетаются потоки галактических газов и пыли, что приводит к активному образованию звезд.
  • От краев перемычки раскручиваются два главных рукава спирали Млечного Пути — рукава Щита-Кентавра и Персея. Их назвали в честь созвездий земного неба, совпадающих с ними. Существует еще минимум 5 меньших рукавов, которые ответвляются параллельно главным. Однако они являются всего лишь частью галактического диска — тонкого слоя галактики, в котором концентрируется большая часть ее видимого вещества. Толщина диска Млечного Пути равна 2 тысячам световых лет, что довольно мало в сравнении с 180 тысячами с.л. диаметра.

Интересный факт. Рукава — это весьма необычная структура. Когда газ и пыль сохраняют свою спиральную форму и вращаются вместе с галактикой, звезды полностью самостоятельные — они покидают «родительские» рукава и улетают в другие. Существует только один небольшой промежуток, где движение звезд и рукавов синхронно — в этом секторе находится наше Солнце. Астрономы считают, что именно нахождение в таком спокойном месте позволило жизни на Земле сформироваться. Столкновения с облаками галактической пыли и близкие контакты с другими звездами серьезно бы повлияли на планетную систему Солнца.

Галактические рукава и невидимая зона Млечного Пути

Остальную же часть галактики составляет гало. Никто не знает, как далеко оно простирается и где заканчивается. Гало преимущественно заполнено темной материей, которую не так-то просто обнаружить. Однако в нем присутствуют и видимые части. В астрономии их называют сфероидальным компонентом Млечного Пути. Это те видимые светила и облака газов, которые не причисляются к звездному диску — например, шаровые скопления. Светила в них сбиты очень тесно: на кубический парсек в них от 700 до 7000 раз больше звезд!

Шаровые скопления звезд движутся по вытянутым орбитам вокруг Млечного Пути и не контактируют с его газопылевым диском, «заправочной станцией» звездообразования. Поэтому газов у них почти нет, а все звезды приблизительно одного поколения. Но есть скопления, которые выбиваются из этого правила. Они очень плотны, их масса достигает миллионов солнечных масс, и состоят из звезд различного возраста.

Спутники Млечного Пути

Загадка происхождения столь необычных объектов оказалась проста — это остатки ядер тех галактик, которые Млечный Путь поглотил в прошлом. Невероятно, но такие вот «косточки» бывших спутников составляют около четверти всех шаровых звездных скоплений нашей галактики.

Галактические скопления

Галактика – невероятно интересный, яркий и красивый объект Вселенной, таящий в себе невероятное количество загадок.

Сколько существует галактик? Сосчитать их количество просто невозможно. Астрономы предполагают, что их примерно 100 миллиардов или больше. Расположение их в пространстве неравномерное. В одной области их скапливается огромное количество, в другой могут быть единичные экземпляры.

Список галактик – одиночек очень мал. Почти 95% сливаются в группы. В них преобладает одна мощная спиралевидная или эллиптическая галактика. Она притягивает к себе своих спутников, разрушая их гравитационное поле. В результате образуется скопление с несколькими десятками или даже тысячи галактик (сверхскопление). Форма их может быть разнообразной. Это цепочки, стены. В сверхскоплениях звёздные островки вытягиваются в своеобразные нити. Они окружают войды (пустоты) и формируют плоские скопления.

Космические системы, постоянно перемещаясь, неизменно взаимодействуют между собой. Иногда они сталкиваются и сливаются. Во время столкновения часто происходит взрыв и в космос выбрасывается огромное количество энергии. Но в некоторых случаях звёздные галактики проходят мимо друг друга, только чуть затронув и изменив его структуру.

Звёздные островки по-разному откликаются на взаимодействие друг с другом. При среднем значении расстояний между космическими системами, превышающем их диаметр, наблюдаются приливные воздействия. Если расстояние большое, но и скорость пролёта галактик велика, то более массивное звёздное образование, пролетая мимо, перетягивает на себя межгалактический горячий газ, лишая источника питания и энергии более мелкое. В результате последняя теряет запасы межзвёздного газа необходимого для создания звёзд. Если расстояние станет меньше, то большой объект вообще перетянет к себе тёмное тело меньшего, оставив его без материи. При небольшом расстоянии и краткосрочном взаимодействии галактик внутри них формируются волны плотности газа, которые становятся причиной вспышки огромного количества звёзд и образованию спиральных ветвей.

Предельным случаем галактического взаимодействия является соединение звёздных островов. Астрономы установили, что процесс начинается со слияния тёмных галактических тел. Затем галактики, приближаются по спиралевидному пути друг к другу. Последними сливаются компоненты звёзд, вызывая вспышки звездообразования.

Центр галактики

Рихтер обнаружил причину в таинственном центре Галактики. Концентрация звезд там в тысячу раз больше, чем в окрестностях Солнца. В самом же центре Галактики есть мощный источник радиоизлучения Стрелец А — нечто вроде шара диаметром до 500 световых лет. Он погружен в быстро вращающийся газовый диск с резкой внешней границей на расстоянии 2500 световых лет от центра. Этот тонкий газовый диск вращается примерно так, как вращалось бы твердое тело, а не расплывчатое облако газа.

На первый взгляд, это странно. Как может газ превратиться в твердь? Объяснение таково: линейная скорость вращения краев диска (они резко очерчены) составляет около 260 километров в секунду, а при такой скорости масса газа движется как бы в твердых стенках. (Прыгнув в воду с высокой вышки, вы можете убедиться, какой твердой становится податливая мягкая среда, если вы движетесь в ней со слишком большой скоростью).

Теперь, вспомнив сказанное выше о возможности существования в галактическом газе ударных волн, мы легко поймем суть идеи Рихтера.

Пусть в наружной газовой «стенке» диска или в нем самом возникнет небольшая неоднородность. Нарушив равновесие вращения, она быстро развивается, и в конце концов часть вещества вырвется с огромной скоростью в окружающее пространство. Вырвавшийся сгусток наносит колоссальный удар по внешней среде. И в межзвездном газе возбуждается мощная взрывная волна. Она будет распространяться от центрального ядра к периферии Галактики.

По мнению профессора Рихтера, начальная скорость ударной волны составляет около 60 километров в секунду. При такой скорости она движется в межзвездном газе, точно внутри «твердой трубки» (как породивший ее диск вращается внутри «твердых стенок»). Но по мере удаления от центра скорость ударной волны уменьшается из-за сопротивления межзвездной среды и гравитационных воздействий, а путь ее — изгибается. В конце концов, волна рассеивается. Но все это длится миллиарды лет, ибо траектории волн, пути их распространения в газе очень устойчивы.

Становится также ясно, почему до сих пор не исчерпался центральный галактический диск. В ударной волне за сгущением следует разрежение, и часть вещества возвращается на прежнее место.

Таким образом, по Рихтеру спиральные рукава Галактики это не что иное, как ударные волны, время от времени возникающие в ее центре. Поперечник космических ударных волн огромен — измеряется миллионами квадратных световых лет. По положению сгущений и разрежений в рукавах Рихтер оценил интервалы между двумя последовательными ударными волнами в 300 — 400 миллионов лет. Последняя ударная волна возникла около 60 миллионов лет назад.

Как видите, наш звездный дом получает новый облик — вместо рыхлого, расплывчатого образования он представляется стремительно вращающимся звездно-газовым волчком, пронизанным гигантскими волнами, которые держат его и придают ему сложную, тонкую динамическую структуру.

Спирали должны размазаться

Галактика имеет очень сложную форму и вращается вокруг своего центра масс. Спиральные галактические рукава изогнуты. И не беспорядочно, а по строгой математической формуле логарифмической спирали. Так же изогнуты ветви множества других спиральных галактик — очевидно, эта форма устойчива. Во всяком случае, она существует так же долго, как наша Солнечная система (то есть примерно 5—6 миллиардов лет). Весьма вероятно, однако, что спирали Галактики существовали раньше, чем образовалось наше Солнце. Но тут начинается непонятное.

Разумно предположить: каждая звезда, каждая молекула газа или пылинка вращается совершенно независимо от других вокруг центра тяжести Галактики. И по тем же законам, по которым искусственные спутники движутся вокруг Земли. Но тогда те массы галактического вещества, которые расположены ближе к центру Галактики, должны делать полный оборот гораздо быстрее, чем далекие. Выходит, не успело бы наше Солнце совершить один оборот (ему понадобилось бы для этого «всего» 200 миллионов лет), как одни «жители» Галактики, те, что ближе к центру, обогнали бы его, а далекие от центра звезды, пылевые скопления и т. д. отстали бы. Значит, рукава Галактики размазались бы в сплошной диск или разбились бы на концентрические кольца, вроде колец Сатурна. Почему этого не происходит, до недавних пор не мог понять ни один астроном.

Устойчивость галактических рукавов представлялась загадочной и удивительной. Еще хуже обстоит дело с центром Галактики, где плотность газа значительно больше, чем в рукавах. Газ этот, видимо, «вытекает» в рукава. Одна лишь ближайшая к центру спиральная ветвь должна уносить за год из галактического центра количество газа, равное по массе Солнцу. Как считает известный голландский астроном Оорт, всего за тридцать миллионов лет одна лишь эта ветвь должна была «выкачать» весь газ из диска радиусом до 9 тысяч световых лет. Слишком быстро!

Объяснить длительное существование ядра мог бы приток в него откуда-то новых порций газа. Но этого еще никто не обнаружил.

Астрономы попали в странное положение: после многих трудов им удалось выяснить состав и строение нашей Галактики, и тут же они увидели, что такое строение долго сохраняться как будто не должно.

Впервые обоснованную попытку объяснить постоянства формы Галактики сделал профессор Г. Рихтер из Германии.

Типы галактик в соответствии с принятой классификацией

Хаббл первый решился на такой шаг, сделав в 1962 году попытку логическим путем классифицировать известные на тот момент галактики. Классификация осуществлялась на основании формы исследуемых объектов. В результате Хабблу удалось расставить все галактики по четырем группам:

  • наиболее распространенным типом являются спиральные галактики;
  • далее следуют эллиптические спиральные галактики;
  • с перемычкой (бар) галактики;
  • неправильные галактики.

Следует отметить, что наш Млечный Путь относится к типичным спиральным галактикам, однако есть одно «но». С недавнего времени выявлено наличие перемычки – бара, который присутствует в центральной части образования. Другими словами наша галактика берет свое начало не с галактического ядра, а вытекает из перемычки.

Млечный путь с перемычкой

Традиционно спиральная галактика выглядит в форме диска спиралевидной плоской формы, в котором обязательно присутствует яркий центр – ядро галактики. Таких галактик больше всего во Вселенной и обозначаются они латинской буквой S. Помимо этого существуют разделение спиральных галактик на четыре подгруппы – So, Sa, Sb и Sc. Маленькие буквы обозначают наличие яркого ядра, отсутствие рукавов или наоборот, наличие плотных рукавов, охватывающих центральную часть галактики. В таких рукавах располагаются скопления звезд, группы звезд, в состав которых входит наша Солнечная система, прочие космические объекты.

Спиральная галактика

Главной особенностью этого типа является медленное вращение вокруг центра. Млечный Путь совершает полный оборот вокруг своего центра за 250 млн. лет. Спирали, расположенные ближе к центру состоят в основном из скоплений старых звезд. Центр нашей галактики – это черная дыра, вокруг которой и происходит все основное движение. Протяженность пути по современным оценкам составляет по направлению к центру 1,5-25 тыс. световых лет. В процессе своего существования спиральные галактики могут сливаться с другими вселенскими образованиями меньших размеров. Свидетельством таких столкновений в более ранние периоды является наличие гало звезд и гало скоплений. Подобная теория лежит в основе теории образования спиральных галактик, которые стали результатом столкновения двух галактик, расположенных по соседству. Столкновение не могло пройти бесследно, придав общий вращательный импульс новому образованию. Рядом со спиральной галактикой находится карликовая галактика, одна, две или сразу несколько, являющиеся спутниками более крупного образования.

Галактики с перемычкой

С перемычкой галактики встречаются значительно реже. На них приходится примерно половины всех спиральных галактик. В отличие от спиральных образований, в таких галактиках начало берется из перемычки, называемой баром, вытекающей из двух самых ярких звезд, расположенных в центре. Ярким примером такого образования является наш Млечный Путь и галактика Большое Магелланово Облако. Ранее это образование относили к неправильным галактикам. Появление перемычки является на данный момент одной из основных областей исследования в современной астрофизике. По одной из версий, близко расположенная черная дыра высасывает и поглощает газ из соседних звезд.

Самые красивые галактики во Вселенной относятся к типу спиральных и неправильных галактик. Одной из самых красивых является галактика Водоворот, расположенная в небесном созвездии Гончие Псы. В данном случае отчетливо видны центр галактики и спирали, вращающиеся в одном направлении. Неправильные галактики представляют собой хаотически расположенные сверхскопления звезд, не имеющие четкой структуры. Ярким примером такого образования является галактика под номером NGC 4038, расположенная в созвездии Ворон. Здесь наряду с огромными газовыми облаками и туманностями можно увидеть полное отсутствие порядка в расположении космических объектов.

Галактика Водоворот

Странная нить

Некоторые явления порой ставят астрономов в тупик.

Недавно астрономические обсерватории нескольких стран обратили взор своих телескопов на один и тот же объект – черную дыру в центре нашей галактики. Благодаря этому ученые получили наиболее детализированное на данный момент изображение Стрельца А*.

Иногда радиотелескопы захватывают изображение неких нетермальных радионитей. Они не проявляются в оптическом спектре и при этом никто не знает, что это такое. Одна такая нить проявилась на изображении черной дыры Стрелец А*. Ее протяженность составляет около 2,3 светового года и, судя по всему, один из ее концов попадает в самый центр черной дыры.

Увиденное пока не поддается объяснению, но имеется несколько предположений на этот счет. Согласно одной из выдвинутых ранее теоретиками версий, радионити способны генерировать так называемое синхротронное излучение, возникающее при ускорении заряженных частиц под воздействием магнитного поля. Однако в таком случае непонятно — откуда в принципе берутся эти заряженные частицы? Кто их «зарядил»?

Согласно другому предположению, нити – это не что иное, как «разлом» в пространстве, так называемый топологический дефект, теоретически возникающий под действием изменяющегося состояния вакуума. Согласно некоторым мнениям, эти нити обладают аналогичным зарядом и массой с галактическими нитями, которые как паутина покрывают все пространство Вселенной.

Обсудить статью можно в нашем Telegram-чате.

Млечный путь

Солнце обращается вокруг центра вполне рядовой спиральной галактики, в состав которой входят 200−400 миллиардов звезд. Ее диаметр приблизительно равен 28 килопарсекам (чуть больше 90 световых лет). Радиус солнечной внутригалактической орбиты — 8,5 килопарсек (так что наше светило смещено к внешнему краю галактического диска), время полного оборота вокруг центра Галактики — примерно 250 миллионов лет.

Балдж Млечного Пути имеет эллипсовидную форму и наделен баром, который обнаружили совсем недавно. В центре балджа находится компактное ядро, заполненное звездами различного возраста — от нескольких миллионов лет до миллиарда и старше. Внутри ядра за плотными пылевыми облаками скрывается достаточно скромная по галактическим стандартам черная дыра — всего лишь 3,7 миллиона солнечных масс.

Наша Галактика может похвастаться двойным звездным диском. На долю внутреннего диска, который имеет по вертикали не более 500 парсек, приходится 95% звезд дисковой зоны, в том числе все молодые яркие звезды. Его охватывает внешний диск толщиной в полторы тысячи парсек, где обитают звезды постарше. Газовый (точнее, газо-пылевой) диск Млечного Пути имеет в толщину не менее 3,5 килопарсек. Четыре спиральных рукава диска представляют собой области повышенной плотности газо-пылевой среды и содержат большинство самых массивных звезд.

Диаметр гало Млечного Пути не менее, чем вдвое больше диаметра диска. Там обнаружено порядка 150 глобулярных кластеров, причем, скорее всего, еще с полсотни пока не открыты. Возраст старейших кластеров превышает 13 миллиардов лет. Гало заполнено темной материей, имеющей комковатую структуру.

До недавнего времени полагали, что гало почти шарообразно, однако, по последним данным, оно может быть значительно приплюснуто. Общая масса Галактики может составлять до 3 триллионов солнечных масс, причем на долю темной материи приходится 90−95%. Масса звезд Млечного Пути оценивается в 90−100 миллиардов масс Солнца.

Эллиптическая галактика, как и следует из ее названия, имеет форму эллипсоида. Она не вращается как целое и потому не обладает осевой симметрией. Ее звезды, которые в основном имеют сравнительно небольшую массу и солидный возраст, обращаются вокруг галактического центра в разных плоскостях и иногда не по отдельности, а сильно вытянутыми цепочками.

Новые светила в эллиптических галактиках загораются редко в связи с дефицитом исходного сырья — молекулярного водорода.

Подобно людям, галактики объединяются в группы. Наша Местная группа включает две самые крупные галактики в окрестностях размером порядка 3 мегапарсек — Млечный путь и Андромеду (M31), галактику Треугольника, а также их спутники — Большое и Малое Магеллановы облака, карликовые галактики в Большом Псе, Пегасе, Киле, Секстанте, Фениксе, и еще множество других — всего числом около полусотни. Местная группа в свою очередь является членом местного сверхскопления Девы.

Как самые крупные, так и самые мелкие галактики относятся к эллиптическому типу. Общая доля его представителей в галактическом населении Вселенной всего около 20%. Эти галактики (возможно, за исключением самых мелких и тусклых) также скрывают в своих центральных зонах сверхмассивные черные дыры. Эллиптические галактики имеют и гало, но не столь четкие, как у дисковидных.

Все прочие галактики считаются иррегулярными. Они содержат много пыли и газа и активно порождают молодые звезды. На умеренных расстояниях от Млечного Пути таких галактик немного, всего-то 3%.

Однако среди объектов с большим красным смещением, чей свет был испущен не позже, чем через 3 млрд лет после Большого взрыва, их доля резко возрастает. Судя по всему, все звездные системы первого поколения были невелики и обладали неправильными очертаниями, а крупные дисковидные и эллиптические галактики возникли гораздо позже.

Квадранты

В звёздной картографии под квадрантом подразумевается обширное пространство космоса в рамках галактики. Границы квадрантов определяются осями, проходящими через центр галактики и пересекающимися перпендикулярно друг относительно друга. Таким образом, галактика Млечный путь состоит из четырёх приблизительно равных квадрантов, которые называются Альфа, Бета, Гамма и Дельта-квадрантами. Звёздный Флот Федерации и его ближайшие соседи Клингонская и Ромуланская империи располагаются в Альфа и Бета-квадрантах. Коллектив боргов находится в Дельта-квадранте. Доминион — в Гамма-квадранте.

Альфа-квадрант

Альфа-квадрант — это собирательное название одной четвёртой галактики Млечный Путь. Его границы определены меридианом, проходящим через галактическое ядро вблизи Солнечной системы и вторым меридианом, перпендикулярным первому. В квадрант входят Рукав Ориона, Рукав Персея и Рукав Стрельца.

Межзвёздная политика в Альфа-квадранте в XXIV веке в основном определялась Звёздном Флоте Федерации совместно с другими силами региона, включавшими Клингонскую и Ромуланскую империи, Кардассианский союз, Тзенкети, Таларианскую республику и Альянс ференгов, которые взаимодействовали между собой в основном мирно. Члены Толианского сообщества , Конфедерации бринов и Зинди держались достаточно обособленно от остальных обитателей Альфа-квадранта.

Стоит отметить, что к этому времени достаточно изучено только 25 процентов Альфа-квадранта, но и они содержат примеры потрясающей красоты и научного чуда, как, например, Звёздное скопление Арголис, Туманность Арахнид и Пустоши.

Одним из самых интересных астрономических объектов является Баджорская червоточина, соединяющая Баджорский сектор в Альфа-квадранте с системой Идран, расположенной в отдалённой части Гамма-квадранта, неподалёку от пространства Доминиона. Использование этой червоточины обитателями Альфа-квадранта для исследований и торговли вызвало усиление враждебности со стороны Доминиона, что вылилось в Доминионскую войну.

Бета-квадрант

Бета-квадрант — это собирательное название одной четвёртой галактики Млечный Путь. Один из квадрантов нашей Галактики, расположенный в направлении созвездия Киля перпендикулярно α Квадранту. В Бета-Квадранте располагаются владения Клингонской звёздной империи, а также Ромуланской звёздной империи, некоторая часть Квадранта принадлежит и Федерации. Федерации плохо известна картография Бета-Квадранта — в основном по причине перекрывания дальнейшего доступа к остальной части Квадранта Клингонской и Ромуланской империями: известно, что в 2566 году клингоны присоединились к Федерации — вероятно, тогда началось более активное освоение Квадранта, потому как барьеров больше не стало. В 2293 году крейсер типа «Эксельсиор» под командованием капитана Салу закончил трёхлетний исследовательский рейс в Бета-Квадранте, который включал каталогизирование газообразных аномалий Квадранта. 70 лет спустя «Олимп» под командованием Лайзы Кузак семь лет исследовал Бета-Квадрант. С большой долей вероятности можно предположить, что большинство миссий NX-01 имели место в Бета-Квадранте и лишь часть — в α Квадранте.

Гамма-квадрант

Гамма-квадрант — это собирательное название одной четвёртой галактики Млечный Путь. Его границы определённы меридианом, проходящим через галактическое ядро вблизи Солнечной системы и вторым меридианом, перпендикулярным первому. Ближайшая к Земле граница Гамма-квадранта расположена примерно в 30 000 световых годах от неё. Стабильная Баджорская червоточина соединяет Баджорский сектор в Альфа-квадранте с системой Идран, расположенной в Гамма-квадранте.

Дельта-квадрант

Дельта-квадрант — это собирательное название одной четвёртой галактики Млечный Путь. Его границы определены меридианом, проходящим через галактическое ядро вблизи Солнечной системы, и вторым меридианом, перпендикулярным первому. Ближайшая точка до Земли расположена примерно в 30 000 световых годах от Земли. В квадрант входит часть Рукава Центавра, а также шаровые звёздные скопления M14 (NGC 6402) и M80 (NGC 6093).

Впервые люди были заселены в Дельта-квадрант расой под названием бриори примерно в 1937 году для использования в качестве рабов. Но рабы восстали, а их потомки основали новую цивилизацию на планете L-класса. Впервые люди самостоятельно посетили этот сектор космоса в звёздную дату 32629.4, когда звездолёту «Рэйвен» удалось проследовать за кораблём боргов через трансварповый канал. Первая миссия Звёздного флота в Дельта-квадранте совпала с инспекцией Барзанской червоточины в 2366 году.

Структура Вселенной и ее размеры

На протяжении многих тысячелетий человечество считало, что Вселенная вечна и неизменна. Данная теория господствовала во всем в мире вплоть до начала ХХ столетия. Колоссальный переворот в науке о космическом пространстве произошел в 20-е годы прошлого века, благодаря таким ученым как Эйнштейн, Фридман и Хаббл. Именно они выдвинули предположения и доказали, что Вселенная – это целая система, которая живет своей жизнью и способна изменяться во времени, то есть расширяться или сжиматься.

В структуре Вселенной выделяют несколько уровней организации, каждый из которых отличается масштабом объектов:

Практически все космические тела в необъятной Вселенной формируют группы. Звезды группируются парами или входят в звездные скопления. В таких скоплениях могут содержаться десятки или даже сотни таких светил. Исключением считается Солнце, так как у него нет «двойника».

Двойная звезда Источник

Следующий уровень – галактики. Они бывают неправильной, линзовидной, спиральной и эллиптической формы. Вот только почему существует такая классификация, ученые еще не нашли ответ. В пределах одного галактического пространства есть черные дыры, межзвездный газ, темная материя, двойные звезды, пыль, электромагнитное излучение. Астрономы предполагают, что во Вселенной существуют сотни миллионов галактик.

Спиральная Галактика  

Небольшое скопление галактик формируют Местную группу. Данный уровень организации считается одной из самых крупных и устойчивых структур. Все объекты в системе скопления галактик удерживаются гравитационной силой и еще каким-то фактором. Что это за фактор ученые пока не знают, но уверенны, что одной лишь силы гравитации для поддержания стабильности недостаточно. Скопление, в которое входит Млечный путь, Треугольник и Андромеда, включает еще 31 галактическую систему.

Скопление галактик в Персее Источник

Сверхскопление галактик – в составе такой структуры десятки или даже сотни галактических систем или их скоплений. Гравитационные силы здесь уже не такие сильные, поэтому сверхскопления движутся вместе с расширяющейся Вселенной.

Сверхскопление Волопаса Источник

На последнем уровне во Вселенной находятся ячейки, или пузыри. Их границы образуют сверхскопления галактик. Между этими структурами расположены пустотные области, которые получили название войды. Изучение войд, как и самых отдаленных частей Вселенной, происходит с помощью современных телескопов, одним из которых является телескоп Хаббла. В течение длительного времени, астрономы наблюдают за процессами, происходящими в космосе, изучают скопления и расположение звезд, после чего делаются определенные расчеты, строятся модели Вселенной, звездные карты и т.д.

Войд Волопаса Источник

Все структуры Вселенной являются уникальными и таинственными. Человечество уже гораздо лучше понимает, как устроено космическое пространство. Но с каждым новым открытием у ученых появляются и новые вопросы, ответы на которое порой не так легко найти.

Изучая размеры Вселенной, астрономы могут говорить только о ее видимой части, которую научно называют Метагалактикой. Чем больше сведений и знаний ученые получают о ней, тем больше становятся ее границы, причем они расширяются абсолютно во всех направлениях. Это говорит о сферической форме Вселенной.

Принято считать, что возраст Вселенной составляет 13,8 млрд. лет. Именно столько времени прошло с момента Большого Взрыва. Однако это только предположения, полученные в результате многолетней работы специалистов. Они основаны на наблюдениях и расчетах, но утверждать со 100% уверенностью, что Взрыв действительно был, нельзя. На сегодняшний день теория Большого Взрыва является общепринятой, так как именно она объясняет многие процессы, происходящие в космическом пространстве.Учитывая скорость света, ученые предполагают, что размеры Вселенной составляют также 13,8 млрд. световых лет. Скорей всего эта цифра не совсем точная, так как с момента зарождения пространство Вселенной все время расширяется. Некоторая его часть движется со сверхсветовой скоростью, из-за чего многие объекты навсегда останутся вне зоны видимости человека. 

Математическая модель Вселенной Источник

Структура Млечного Пути

Если внимательно рассмотреть структуру Млечного Пути, то мы увидим следующее:

  1. Галактический диск. Здесь сосредоточено большинство звезд Млечного Пути.

Сам диск разбит на следующие части:

  • Ядро это центр диска;
  • Дуги – области вокруг ядра, в том числе непосредственно области выше и ниже плоскости диска.
  • Спиральные рукава – это области, которые выступают наружу от центра. Наша Солнечная Система находится в одном из спиральных рукавов Млечного Пути.
  1. Шаровые скопления. Несколько сотен из них разбросаны выше и ниже плоскости диска.
  2. Гало. Это большая, тусклая область, которая окружает всю галактику. Гало состоит из газа большой температуры и, возможно, темной материи.

Радиус гало значительно больше размеров диска и по некоторым данным достигает нескольких сот тысяч световых лет. Центр симметрии гало Млечного Пути совпадает с центром галактического диска. Состоит гало в основном из очень старых, неярких звезд. Возраст сферической составляющей Галактики превышает 12 млрд лет. Центральная, наиболее плотная часть гало в пределах нескольких тысяч световых лет от центра Галактики называется балдж (в переводе с английского «утолщение»). Вращается гало в целом очень медленно.

По сравнению с гало диск вращается заметно быстрее. Он представляет собой как бы две сложенные краями тарелки. Диаметр диска Галактики около 30 кпк (100 000 световых лет). Толщина – около 1000 световых лет. Скорость вращения не одинакова на различных расстояниях от центра. Она быстро возрастает от нуля в  центре до 200-240 км/с на расстоянии 2 тыс. световых лет от него. Масса диска в 150 млрд раз больше массы Солнца (1,99*1030 кг). В диске концентрируются молодые звезды и звездные скопления. Среди них много ярких и горячих звезд. Газ в диске Галактики распределен неравномерно, образуя гигантские облака. Основным химическим элементом в нашей Галактике является водород. Примерно на 1/4 она состоит из гелия.

Одной из самых интересных областей Галактики считается ее центр, или ядро, расположенное в направлении созвездия Стрельца. Видимое излучение центральных областей Галактики полностью скрыто от нас мощными слоями поглощающей материи. Поэтому ее начали изучать только после создания приемников инфракрасного и радиоизлучения, которое поглощается в меньшей степени. Для центральных областей Галактики характерна сильная концентрация звезд: в каждом кубическом парсеке их многие тысячи. Ближе к центру отмечаются области ионизированного водорода и многочисленные источники инфракрасного излучения, свидетельствующие о происходящем там звездообразовании. В самом центре Галактики предполагается существование массивного компактного объекта – черной дыры массой около миллиона масс Солнца.

Одним из наиболее заметных образований являются спиральные ветви (или рукава). Они и дали название этому типу объектов – спиральные галактики. Вдоль рукавов в основном сосредоточены самые молодые звезды, многие рассеянные звездные скопления, а также цепочки плотных облаков межзвездного газа, в которых продолжают образовываться звезды. В отличие от гало, где какие-либо проявления звездной активности чрезвычайно редки, в ветвях продолжается бурная жизнь, связанная с непрерывным переходом вещества из межзвездного пространства в звезды и обратно. Спиральные рукава Млечного Пути в значительной мере скрыты от нас поглощающей материей. Подробное их исследование началось после появления радиотелескопов. Они позволили изучать структуру Галактики по наблюдениям радиоизлучения атомов межзвездного водорода, концентрирующегося вдоль длинных спиралей. По современным представлениям, спиральные рукава связаны с волнами сжатия, распространяющимися по диску галактики. Проходя через области сжатия, вещество диска уплотняется, а образование звезд из газа становится более интенсивным. Причины возникновения в дисках спиральных галактик такой своеобразной волновой структуры не вполне ясны. Над этой проблемой работают многие астрофизики.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector