Урановые снаряды

Сверхмалые ядерные заряды: от патрона до снаряда

Гонка ядерных вооружений подарила миру не только баллистические ракеты, стратегические бомбардировщики и подводные лодки, но и куда более маленькие ядерные заряды и средства их доставки. В свое время в мире активно развивались артиллерийские ядерные боеприпасы (в том числе и танковые) и даже, что уж совсем необычно, пули с ядерным зарядом.

Конечно же, наибольшее развитие получили ядерные снаряды – боеприпасы, предназначенные для нанесения тактических ядерных ударов по скоплениям войск противника и крупным промышленным объектам. Ядерные боеприпасы – это наиболее мощное и разрушительное средство, которое доступно современной артиллерии.

Подобные боеприпасы есть на вооружении у большинства ядерных держав, в том числе у России и США. Стоит отметить, что особенностью отечественного подхода к ядерной артиллерии является тот факт, что ядерные боеприпасы унифицированы в стандартных линейках боекомплектов и не нуждаются при этом в специальной адаптации для их применения.

В арсенале российской армии есть 152-мм ядерные снаряды для САУ 2С3 «Акация», 2С19 «Мста-С», 203-мм снаряды для САУ 2С7 «Пион», 240-мм мина для самоходной минометной установки 2С4 «Тюльпан». Однако военных еще с середины прошлого века волновали ядерные боеприпасы и куда меньших калибров.

Пулемётные патроны с ядерным зарядом

Проблема разработки ядерного оружия сверхмалых калибров не является новой. Работы в этой области активно велись и в СССР, и в США, начиная с конца 60-х годов прошлого века. При этом все разработки в данной области были очень строго засекречены, и только лишь после того как Семипалатинский полигон перешел под юрисдикцию Казахстана и были рассекречены некоторые материалы из архивов, широкой общественности стали известны некоторые довольно интересные подробности.

Так в протоколах проводимых испытаний были обнаружены упоминания об экспериментах, при которых выделение энергии обозначается, как «менее 0,002 кт», то есть всего 2-х тонн взрывчатки. В некоторых документах речь шла об испытании атомных боеприпасов для стрелкового оружия – крупнокалиберных пулеметных патронов калибра 14,3 и 12,7-мм, но самое потрясающее – испытания патронов винтовочного калибра 7,62-мм. Такие боеприпасы были предназначены для использования в ПКС, именно патрон для этого пулемета конструкции Калашникова и был самым маленьким в мире атомным боеприпасом.

Радикального уменьшения веса и размеров, а также сложности самой конструкции удалось добиться за счет использования не обычного для ядерных боеприпасов плутония или урана, а достаточно экзотического трансуранового элемента калифорния – точнее, его изотопа с атомным весом 252. После того, как данный изотоп был обнаружен, физики были ошеломлены тем, что основным каналом распада у данного изотопа было спонтанное деление, в ходе которого вылетало 5-8 нейтронов (для сравнения у плутония или урана только 2-3). Первые экспериментальные оценки критической массы данного металла выдали фантастически малую величину – всего 1,8 гр., но дальнейшие эксперименты продемонстрировали, что реальное значение критической массы оказалось больше.

Но в распоряжении ученых находились только микрограммы калифорния. Программа его получения и накопления являлась отдельной главой в истории ядерной программы СССР. О секретности данных разработок свидетельствует хотя бы тот факт, что имя академика Михаила Юрьевича Дубика почти никому неизвестно, хотя он был ближайшим сподвижником Курчатова. Именно Дубику и было поручено в самые короткие сроки решить вопрос по наработке ценного изотопа – калифорния.

Впоследствии из полученного калифорния производилась уникальная начинка для пуль – деталь, которая по своей форме напоминала гантель или заклепку. Небольшой заряд специальной взрывчатки, который находился у донышка пули, сминал эту деталь в достаточно аккуратный шарик, при помощи чего достигалось его сверхкритическое состояние.


Пулемёт ПКС

При использовании с пулями калибра 7,62-мм диаметр такого шарика равнялся практически 8 мм. Для срабатывания взрывчатки применялся специальный контактный взрыватель, созданный для данной программы. В результате атомная пуля получилась перетяжеленной. Поэтому, для того чтобы сохранить баллистику пули, привычную для стрелка-пулеметчика, ученым пришлось создать и специальный порох, который придавал небольшому ядерному боеприпасу правильный разгон в пулеметном стволе.

Военное применение

Сердечник снаряда калибра 30 мм (пушки GAU-8 самолёта A-10) диаметром около 20 мм из обеднённого урана.

Плотность обеднённого урана очень высока — 19050 кг/м³. Обеднённый уран на 67 % плотнее, чем свинец, это лишь немного меньше, чем плотность вольфрама и золота, и только на 16 % меньше, чем плотность осмия или иридия. В результате снаряд из обеднённого урана имеет меньший диаметр, чем эквивалентный по массе снаряд из другого металла, а следовательно и меньшее аэродинамическое сопротивление и глубже проникает в цель из-за более высокого давления в момент попадания.

Пластины брони

Благодаря высокой плотности обеднённый уран может быть использован в танковой броне в качестве промежуточного слоя между стальными листами. Например, поздние образцы танков M1A1HA и M1A2 Abrams, выпущенные после 1998 года, содержат вкладыши из обеднённого урана в броне передней части корпуса и передней части башни.

Такой обедненный уран получил название «уранокерамика».

Ядерное оружие

Обеднённый уран используется для оболочек ядерных бомб и в качестве ядерного топлива для многостадийных водородных бомб.

Снаряды с урановым сердечником

Всякий металл, включая и уран, имеет кристаллическую структуру, в узлах которой — положительные ионы.

Между ионами по замысловатым траекториям, разрешенным квантовой механикой, перемещаются электроны, несущие отрицательный заряд.

Равновесие системы и ее механическая прочность обусловлены магнитным притяжением ионов и электронов.

Соударение уранового снаряда с броней вызывает резкое торможение и возникновение сил, которые «вытряхивают» электроны из кристалла.

Тогда одноименно заряженные ионы отталкиваются и разлетаются во всех направлениях.

Фото 1. Сердечник снаряда калибра 30 мм из обедненного урана

Происходит взрыв, при которого выделяется энергия, численно равная энергии такого же количества тротила. Только выделяется она в 1 000 раз быстрее.

В этом и кроется причина фантастического по силе бронебойного эффекта.

Выделяющаяся энергия не является ядерной.

В конце Второй мировой войны Германия впервые применила урановые сердечники для оснащения бронебойных снарядов.

Никаких особенных бронебойных свойств тогда за такими снарядами не заметили. К чему же тогда потуги немецкой военной промышленности касательно применения урана?

Да все из-за бедности.

Еще с 30-х годов ХХ века в сердечники бронебойных снарядов и пуль стремились включать материалы, обладавшие высокой твердостью и плотностью.

Учитывалась и цена. Лучшим оказался карбид вольфрама с плотностью почти 17 г/см2 (у золота ненамного меньше) и твердостью, позволявшей крошить стекло в труху.

Собственных запасов вольфрама у Германии не было, а закупки из Португалии были прекращены в 1943 г. из-за нежелания местного правительства иметь дело с гитлеровским режимом.

Для его замены было задействовано 1 200 т необогащенного урана, оставшегося от прекращенных работ по созданию атомной бомбы.

Плотность урана еще выше, чем у вольфрама.

Фото 2. Снаряды с обедненным ураном для артиллерийского комплекса Mark 15 Phalanx CIWS на борту американского линкора USS Missouri (BB-63)

Если бы немецкие снаряды с урановыми сердечниками проявили себя известным образом, пробивая танки насквозь, итоги Второй мировой войны могли бы быть иными…

Почему этого не произошло, теперь известно доподлинно.

Свойством взрываться как уран обладают многие металлы.

Главное — разогнать их до «критической» скорости. Для урана это более 1 500 м/с.

Снаряды же немецких противотанковых пушек едва достигали скорости 1 200 м/с. Уран влиял лишь на их массу.

Бронебойный подкалиберный снаряд и его описание

Как мы уже отметили выше, подобные боеприпасы идеально подходят для стрельбы по танкам. Интересно то, что подкалибер не имеет привычного нам взрывателя и взрывчатого вещества. Принцип действия снаряда полностью основан на его кинетической энергии. Если сравнить, то это что-то похожее на массивную высокоскоростную пулю.

Состоит подкалибер из катушечного корпуса. В него вставляется сердечник, который зачастую выполняют в 3 раза меньшего размера, нежели калибр орудия. В качестве материала для сердечника используются металлокерамические сплавы высокой прочности. Если раньше это был вольфрам, то сегодня более популярен обедненный уран по целому ряду причин. Во время выстрела всю нагрузку воспринимает на себя поддон, тем самым обеспечивая начальную скорость полета. Так как вес такого снаряда меньше, нежели обычного бронебойного, за счет уменьшения калибра удалось добиться увеличения скорости полета. Речь идет о существенных значениях. Так, оперенный подкалиберный снаряд летит со скоростью 1 600 м/с, в то время как классический бронепробивающий – 800-1 000 м/с.

Популярная механика взрыва

Суть любого взрыва — это стремительное высвобождение энергии, ранее находившейся в несвободном, связанном состоянии. Освободившаяся энергия рассеивается, преимущественно переходя в тепло (кинетическую энергию неупорядоченного движения молекул), ударную волну (тут тоже движение, но уже упорядоченное, по направлению от центра взрыва) и излучение — от мягкого инфракрасного до жестких коротковолновых квантов.

При химическом взрыве все относительно просто. Происходит энергетически-выгодная реакция, когда между собой взаимодействуют некие вещества. В реакции участвуют только верхние электронные слои некоторых атомов, а глубже взаимодействие не идет. Несложно догадаться, что скрытой энергии в любом веществе гораздо больше. Но каковы бы ни были условия опыта, сколь бы удачные реагенты мы ни подобрали, как бы ни выверяли пропорции — глубже в атом химия нас не пустит. Химический взрыв — явление примитивное, малоэффективное и, с точки зрения физики, до неприличия слабое.

Ядерная цепная реакция позволяет копнуть чуть глубже, включая в игру не только электроны, но и ядра. По-настоящему весомо это звучит, пожалуй, только для физика, а остальным приведу простую аналогию. Представьте себе гигантскую гирю, вокруг которой на расстоянии нескольких километров порхают наэлектризованные пылинки. Это атом, «гиря» — ядро, а «пылинки» — электроны. Что с этими пылинками ни делай, они не дадут и сотой доли той энергии, которую можно получить от увесистой гири. Особенно если в силу каких-то причин она расколется, и массивные обломки на огромной скорости разлетятся в разные стороны.

Ядерный взрыв задействует потенциал связи тяжелых частиц, из которых состоит ядро. Но это еще далеко не предел: скрытой энергии в веществе гораздо больше. И имя этой энергии — масса. Опять же, для не-физика это звучит немного непривычно, но масса — это энергия, только предельно сконцентрированная. Каждая частица: электрон, протон, нейтрон — все это мизерные сгустки невероятно плотной энергии, до поры до времени пребывающей в покое. Вы наверняка знаете формулу E=mc2, которую так полюбили авторы анекдотов, редакторы стенгазет и оформители школьных кабинетов. Она именно об этом, и именно она постулирует массу как не более чем одну из форм энергии. И она же дает ответ на вопрос, сколько энергии можно получить из вещества по максимуму.

Процесс полного перехода массы, то есть энергии связанной, в энергию свободную, называетсяаннигиляцией. По латинскому корню «nihil» несложно догадаться о ее сути — это превращение в «ничто», вернее — в излучение. Для ясности — немного цифр.

Взрыв Тротиловый эквивалент Энергия (Дж)

Граната Ф-1 60 грамм 2,50*105

Бомба, сброшенная на Хиросиму 16 килотонн 6,70*1013

Аннигиляция одного грамма материи 21,5 килотонн 8,99*1013

Один грамм любой материи (важна только масса) при аннигиляции даст больше энергии, чем небольшая ядерная бомба. По сравнению с такой отдачей смешными кажутся и упражнения физиков над расщеплением ядра, и уж тем более опыты химиков с активными реагентами.

Для аннигиляции нужны соответствующие условия, а именно — контакт материи с антиматерией. И, в отличие от «красной ртути» или «философского камня», антиматерия более чем реальна — для известных нам частиц существуют и исследованы аналогичные античастицы, а эксперименты по аннигиляции пар «электрон + позитрон» неоднократно проводились на практике. Но чтобы создать аннигиляционное оружие, необходимо собрать воедино некоторый весомый объем античастиц, а также ограничить их от контакта с любой материей вплоть до, собственно, боевого применения. Это, тьфу-тьфу, еще далекая перспектива.

Друг сердечник

Главный способ расколупать хорошо защищенную машину противника – шмальнуть по ней бронебойным оперенным подкалиберным снарядом (БОПСом). Его «стрела» просто проткнет броню. Главное – обеспечить высокую кинетическую энергию за счет скорости и массы сердечника.

Скорость дается работой над взрывчаткой, пушкой и формой снаряда. Масса сердечника – колдовство над материалом, и тут два основных направления: вольфрамовые или урановые сплавы. Обедненный уран используют в основном страны, где есть собственный ядерный топливный цикл и не особо заморачиваются над экологией и гуманизмом. США влюблены в уран и используют его без стеснения. Бундесвер предпочитает вольфрам. Россия работает с обоими материалами, но ураном вне специальных полигонов старается не стрелять.

“ «Вакуум-2», возможно, будет пробивать больше метра гомогенной брони ”

Американская любовь имеет плотность 19,05 г/см3, что в 2,5 раза больше, чем у стали, соответственно тяжелее, за счет чего и достигается большая кинетическая энергия полета. Кроме того, благодаря низкой теплопроводности урана сердечник при ударе о броню подвергается адиабатному стачиванию. Можно сказать – самозатачивается. Острая стрела всегда пронзит лучше, чем тупая, как старый молоток. После пробития брони урановая пыль из-за свойства пирофорности, проникнув в танк, вспыхивает, обеспечивая хорошее заброневое поражение. И обедненный уран формально бесплатный, потому как это отходы. Фактически же организовать работу с ним совсем не дешево, потому как он мало того что радиоактивен, так еще и довольно ядовит.

Вольфрам плотнее – 19,25 г/см3 (на 1%). У него тоже есть суперсвойство – высокая температура плавления, в 2,6 раза большая, чем у урана. Поэтому в условиях, когда радиоактивный «ломик» начинает течь от колоссальных температур (если таковые возникают) в месте соударения, то вольфрамовый сохраняет свою твердость. При прочих равных вольфрамовый БОПС проигрывает урановому, но при скорости полета около двух километров в секунду начинает брать свое. Кстати, новая пушка 2А82 как раз выплевывает БОПСы на таких скоростях. Недостаток вольфрама – стоимость. Достоинства – работать с ним несколько проще да и гуманнее он в применении.

Проблема на века

Одна α-частица проходит сотни тысяч атомов, прежде чем остановиться, выбивая сотни тысяч электронов, входящих в состав молекул. Их разрушение (ионизация) ведет к повреждению ДНК или вызывает мутации в самой клеточной структуре. Существует большая вероятность того, что лишь одна частица обедненного урана вызовет рак и повреждение внутренних органов. Так как его период полураспада составляет 4,5 млрд лет, альфа-излучение не ослабнет никогда. Это означает, что человек с ураном в организме будет подвержен воздействию радиации до самой смерти, а окружающая среда будет загрязнена навсегда.

К сожалению, исследования, проведенные Всемирной организацией здравоохранения и другими учреждениями, не касались внутреннего облучения. Например, Министерство обороны США утверждает, что оно не находит связь между обедненным ураном и раковыми заболеваниями в Ираке. Исследования, проведенные ВОЗ и ЕС, пришли к такому же выводу. Эти исследования установили, что уровень радиации на Балканах и в Ираке не наносит вреда здоровью. Тем не менее там зафиксированы случаи рождения детей с врожденными дефектами и высокий уровень заболеваемости раком.

Применение и производство

После первой войны в Персидском заливе и Балканской войны, где использовались снаряды с обедненным ураном, что это за оружие, стало известно лишь через некоторое время. Увеличилось число случаев раковых заболеваний и патологий щитовидной железы (до 20 раз), а также врожденных дефектов у детей. И не только у жителей пострадавших стран. Солдатам, направлявшимся туда, также был нанесен вред здоровью, именуемый синдромом Персидского залива (или балканским синдромом).

Боеприпасы с ураном в огромном количестве использовались во время войны в Афганистане, и есть сведения о высоком уровне этого металла в тканях местного населения. Ирак, уже загрязненный в результате вооруженного конфликта, еще раз подвергся воздействию этого радиоактивного и токсичного материала. Производство «грязных» боеприпасов налажено во Франции, Китае, Пакистане, России, Великобритании и США. Например, снаряды с обедненным ураном в России используются в основном боекомплекте танков с конца 1970-х годов, в основном в 115-миллиметровых пушках танка Т-62 и 125-миллиметровых пушках Т-64, Т-72, Т-80 и Т-90.

Атомные пули — амбициозная советская задумка, которая превратилась в миф (5 фото)

17 октября 2021 10:53

Сообщество : Военное

Метки: Пули  СССР  истории  оружие  

7374

5

Когда в 1940-х годах Америка и Советский Союз последовательно испытали ядерную бомбу, обе сверхдержавы решили, что за атомом – будущее. Различные масштабные проекты с использованием силы полураспада изотопов урана и других элементов с подобными свойствами разрабатывались чуть ли не десятками.

Смотреть все фото в галерее

Одна из этих задумок заключалась в создании «атомных пуль», чья мощь была бы столь разрушительна, как и у ядерной бомбы. Вот только информации об этих разработках осталось ничтожно мало, и вся эта история обросла таким количеством небылиц, что сегодня является полумифом, в правдивость которого мало кто верит.

Атомные пули встречаются в ряде образцов научной фантастики. Но в какой-то момент советские военные инженеры всерьез задумались о возможности создать боеприпасы, в составе которых был бы радиоактивный элемент. Справедливости ради, следует указать, что в некотором роде эти мечтания были воплощены в жизнь и активно используются сегодня. Речь идет о бронебойных подкалиберных снарядах, в составе которых действительно содержится уран. Вот только в этих боеприпасах он обедненный и используется совсем не как «маленькая ядерная бомба».

Предполагаемая схема атомной пули Что касается непосредственно проекта «атомных пуль», то согласно ряду источников, которые стали появляться в СМИ уже в 1990-х, советским ученым удалось создать боеприпасы калибра 14,3 мм и 12,7 мм для тяжелых пулеметов. Кроме того, есть информация о пуле 7,62 мм. Примененное же оружие в этом случае разниться: одни источники указывают, что пули этого калибра изготовили для автомата Калашникова, а другие — что для его станкового пулемета. По планам разработчиков, столь необычные боеприпасы должны были иметь огромную мощь: одна пуля «запекала» бронированный танк, а несколько – стирали с лица земли целое здание. Согласно опубликованным документам, были не только изготовлены опытные образцы, но и проведены успешные испытания. Однако на пути этих утверждений встала, в первую очередь, физика.

Сначала это было понятие критической массы, которое не позволяло использовать для атомных пуль традиционные в изготовлении ядерных бомб уран 235 или плутоний 239. Тогда советские ученые решили применять в этих боеприпасах недавно открытый трансурановый элемент калифорний. Его критическая масса всего 1,8 грамма. Казалось бы, достаточно «сжать» нужное количество калифорния в пулю, и получится ядерный взрыв в миниатюре. Но тут возникает новая проблема – излишнее тепловыделение при распаде элемента. А пуля с калифорнием могла выделять около 5 ватт тепла. Это делало ее бы опасной и для оружия, и для стрелка – боеприпас мог застрять в патроннике или в стволе, а мог самопроизвольно взорваться во время выстрела. Решение этой проблемы пытались найти в создании специальных холодильников для пуль, однако их конструкция и особенности эксплуатации довольно быстро сочли нецелесообразными.

Примерный вид изотопа калифорния Главной же проблемой использования калифорния в атомных пулях было истощение его как ресурса: элемент быстро заканчивался, особенно после введения моратория на испытания ядерного оружия. Кроме того, к конце 1970-х годов стало очевидно, что и вражескую бронетехнику, и сооружения можно успешно уничтожать и более традиционными методами. Поэтому, согласно источникам, проект окончательно закрыли в начале 1980-х годов. Несмотря на ряд публикаций о проекте «атомная пуля», находится немало скептиков, которые решительно отвергают информацию, что подобные боеприпасы когда-либо существовали. Критике поддается буквально все: от выбора калифорния для изготовления пуль до их калибра и использовании оружия Калашникова. На сегодняшний день история этих разработок превратилась в нечто среднее между научным мифом и сенсацией, информации о котором слишком мало, чтобы сделать однозначные выводы. Но с уверенностью можно утверждать одно: сколько бы правды ни было в опубликованных источниках, такая амбициозная задумка сама по себе в рядах не только советских, но и американских ученых, бесспорно, существовала.

Еще крутые истории!

  • Фобии Петра Великого
  • «Не все люди — мерзавцы!»: история человека-легенды
  • Вот как выглядит дом человека, который курил в нем 20 лет
  • Почему Киевская Русь исчезла?
  • «Что за штука?»: странные вещицы, которые нашли пользователи сети

подписаться на сообщество «Военное»

Метки: Пули  СССР  истории  оружие  

Любите повспоминать, как всё было раньше? Присоединяйтесь, поностальгируем вместе:

87 24 63

63 3

57

Новости партнёров

Всё-таки нет: СССР остановил разработку проекта

Наверное, вы заметили, что в тексте часто встречается слово «специальный», так как всё — от самых мелочей и до стандартных вещей приходилось подстраивать под рекомендованное применение атомной пули. Иначе возникал риск самоподрыва. Индивидуальный транспорт, холодильник, оборудование для ликвидации передержанного снаряда, – всё это требовало больших капиталовложений, а отдача, по мнению руководства страны, была минимальной.

ПЗРК «Игла»

Однако это не значило, что сама идея небольшого ядерного оружия была плоха. Просто на тот момент доработать гениальную мысль не было ни сил, ни денег, ни жизненной необходимости.  На вооружении страны уже стояли зенитно-ракетные комплексы «Стрела» и «Игла», которые были не менее затратные в производстве и эксплуатации, но более многофункциональны. Да и простых бомб и снарядов было предостаточно, чтобы уничтожить любую бронированную или живую цель без риска пострадать самому.

Неизвестно, ведутся ли в России современные разработки ядерных патронов. Хотя, учитывая последние сверхэффективные российские разработки (сверхзвуковая ракета «Авангард», лазерный комплекс «Пересвет», крылатая ракета «Буревестник», беспилотная субмарина «Посейдон» и противокорабельная ракета «Кинжал»), мы не удивимся, если учёные достанут из пыльных архивов забытый проект «Атомные пули».

Применение и производство

После первой войны в Персидском заливе и Балканской войны, где использовались снаряды с обедненным ураном, что это за оружие, стало известно лишь через некоторое время. Увеличилось число случаев раковых заболеваний и патологий щитовидной железы (до 20 раз), а также врожденных дефектов у детей. И не только у жителей пострадавших стран. Солдатам, направлявшимся туда, также был нанесен вред здоровью, именуемый синдромом Персидского залива (или балканским синдромом).

Боеприпасы с ураном в огромном количестве использовались во время войны в Афганистане, и есть сведения о высоком уровне этого металла в тканях местного населения. Ирак, уже загрязненный в результате вооруженного конфликта, еще раз подвергся воздействию этого радиоактивного и токсичного материала. Производство «грязных» боеприпасов налажено во Франции, Китае, Пакистане, России, Великобритании и США. Например, снаряды с обедненным ураном в России используются в основном боекомплекте танков с конца 1970-х годов, в основном в 115-миллиметровых пушках танка Т-62 и 125-миллиметровых пушках Т-64, Т-72, Т-80 и Т-90.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector