Гонка термоядерных реакторов: дайджест индустрии 4.0 № 17
Содержание:
- Разработка недели: самовосстанавливающийся материал на основе кальмара
- Тема недели: термоядерный реактор ITER
- Риски ИТЭР
- Технология недели: модель авторизации Zero Trust
- Концептуальный проект
- Создание проекта ИТЭР и запуск реактора
- Избранное
- См. также
- Статья недели: ИИ помог обнаружить китайских рыбаков-браконьеров
- Открытие атомной энергии
- Атомная эра
- Принцип работы ядерного (атомного) реактора
- Преимущества и недостатки
- Диагностика сердца ИТЭР
- Определение деления
- Управляемый синтез
- Перспектива проекта
Разработка недели: самовосстанавливающийся материал на основе кальмара
Ученые из американского Университета Пенсильвании и немецкого Института интеллектуальных систем им. Макса Планка создали самовосстанавливающийся материал на основе зубов кальмара. Разработка в первую очередь пригодится при производстве автоматических приводов, которые часто ломаются из-за того, что постоянно находится в движении.
Зубы кальмаров состоят из твердых и мягких компонентов, а также особых белков, которые восстанавливают поврежденный зуб. Ученые выделили это вещество и при помощи бактериального биореактора создали синтетический полимер. Если нагреть это вещество, оно может «залечить» раны и вернуться в исходную форму за несколько секунд. Еще одно преимущество материала в том, что он биоразлагаемый и не наносит вреда окружающей среде.
Тема недели: термоядерный реактор ITER
28 июля 2020 года в исследовательском центре Кадараш во Франции начали собирать экспериментальный термоядерный реактор типа токамак — сокращенно от «тороидальная камера с магнитными катушками». Строительство реактора планируют завершить в 2025 году. В проекте ITER участвуют ЕС, Индия, Китай, Южная Корея, Россия, США и Япония.
Термоядерный синтез — это реакция, в ходе которой легкие атомы объединяются в более тяжелые. В результате высвобождается энергия. Такой процесс постоянно происходит на Солнце и других звездах. Если ученые смогут построить работающий реактор, люди получат источник неограниченной и «зеленой» энергии.
Сам токамак по форме похож на полый бублик, из которого откачали воздух. В качестве топлива для реактора используют изотопы (подвиды) водорода дейтерий и тритий. Их помещают в токамак и с помощью электрического тока разогревают до температуры в несколько млн градусов. Тогда водород превращается в плазму — заряженный газ, в котором электроны оторваны от ядер атомов. Вся эта масса удерживается внутри реактора при помощи очень мощных магнитов. При температуре 150 млн °C (в десять раз жарче, чем на Солнце) начинается термоядерная реакция. Дейтерий и тритий сливаются и образуют атом гелия-4 и один нейтрон. Нейтроны вылетают за пределы магнитной ловушки и, сталкиваясь со стенками реактора, нагревают воду внутри них. В результате образуется пар, который вращает турбины.
Макет реактора ITER
(Фото: ITER)
Первую плазму на реакторе ITER планируют получить сразу после окончания строительства, в 2025 году. Однако эксперименты с термоядерной реакцией проведут только в 2035 году. Если они пройдут успешно, начнется выпуск термоядерных реакторов DEMO, которые можно будет использовать в коммерческих целях. ITER не единственный в мире проект, цель которого — получить термоядерную энергию. Токамаки есть в Китае, Великобритании и США.
Некоторые компании предлагают и другие типы реакторов. Основной конкурент токамака — стеллератор Wendelstein 7-X, который построили в Институте физики плазмы им. Макса Планка в немецком Грайфсвальде. Если токамак удерживает плазму в центре при помощи мощных магнитов, то стеллератор делает это благодаря своей сложной форме, напоминающей объемную ленту Мебиуса.
Макет стеллератора. Желтым показана плазма, синим — магнитное поле
(Фото: Max-Planck Institut für Plasmaphysik)
Американский стартап TAE Technologies (ранее Tri Alpha Energy) предложил реактор вытянутой формы. В качестве топлива компания использует водород и бор-11. При взаимодействии эти химические элементы не образуют нейтроны, а значит, не создают радиацию. Топливо на большой скорости подается в реактор с двух сторон. От столкновения оно нагревается и превращается в плазму. Минус такого устройства в том, что для его работы нужна очень высокая температура, примерно в 3 млрд °C.
Еще один вид реактора разрабатывает канадская компания General Fusion. Он представляет собой сферу, внутри которой находится расплавленный свинец. К устройству подключены паровые молотки, которые синхронно бьют по сплаву. В металле есть небольшой желобок, в который загружают горячую смесь дейтерия и трития. При каждом ударе молотков происходит микровзрыв, который провоцирует термоядерную реакцию.
Индустрия 4.0
Что такое индустрия 4.0 и что нужно о ней знать
Риски ИТЭР
В настоящее время ИТЭР находится на полпути к своей первоначальной цели циркуляции плазмы.
Разработчики постоянно работают над прогнозированием и смягчением рисков, которые могут привести к дополнительным задержкам или затратам.
Конечной целью, конечно, является не просто циркулирующая плазма, но и плавление дейтерия и трития для создания “горящей” плазмы, которая генерирует значительно больше энергии, чем поступает в нее. Токамак ИТЭР должен генерировать 500 мегаватт электроэнергии, в то время как коммерческие термоядерные установки будут размещать более крупные реакторы, чтобы генерировать от 10 до 15 раз больше энергии. Согласно планам, 2000-мегаваттный термоядерный завод поставит 2 миллиона домов электричеством..
Если проект окажется успешным, ученые ИТЭР предсказывают, что термоядерные электростанции могут начать выходить в эксплуатацию уже к 2040 году по производству 2 гигаватт и более. Капитальные затраты на строительство АЭС должны быть аналогичны капитальным затратам нынешних АЭС ― около 5 миллиардов долларов за гигаватт. В то же время термоядерные электростанции просто используют дейтерий и тритий, и поэтому избегают “затрат на добычу и обогащение урана, или затрат на уход за радиоактивными отходами и их утилизацию.
Строительство атомной станции синтеза стоит больше, чем строительство станции ископаемого топлива. Цены на ископаемое топливо очень высоки, а расходы на топливо для синтеза незначительны, так что в течение срока службы электростанции расходы будут незначительны.
В то же время ископаемое топливо обходится дорого не только из-за финансовых значений. Огромные затраты на ископаемое топливо связаны с воздействием на окружающую среду, будь то из-за добычи полезных ископаемых, загрязнения окружающей среды или выброса парниковых газов. Синтез углерода – бесплатен.
Технология недели: модель авторизации Zero Trust
Распространение AR/VR-устройств делает популярными новые виды авторизации пользователей. Дело в том, что у такого оборудования нет экрана, на котором можно было бы ввести пароль или отсканировать отпечаток пальца. Взамен эксперты предлагают использовать модель Zero Trust (сокращенно ZeTA).
При таком способе авторизации система предлагает пользователю ответить «да» или «нет» на несколько вопросов. «Вопросы» могут быть отдельными словами. Ответы должны соответствовать секретной фразе. Например, ключ — это словосочетание «желтый или колесо». Пользователь пройдет авторизацию, если выберет «подсолнух» и «крутиться», а неверными назовет слова «сердце» и «уголь». При этом количество вопросов может варьироваться. Такой подход сделает авторизацию более удобной и надежной, особенно если человек использует очки дополненной реальности в общественном месте.
Концептуальный проект
Термоядерный синтез, та же реакция, которая происходит в центре Солнца, соединяются атомные ядра, чтобы сформировать более тяжелые ядра. Термоядерный синтез генерирует гораздо больше поток энергии, чем сжигание ископаемого топлива.
Например, в количестве атомов водорода размером с ананас находится столько же энергии, сколько в 10 000 тонн угля, в соответствии с заявлением по проекту международного термоядерного реактора.
В отличие от ядерного деления которое разбивает большие атомы на более мелкие этот термоядерный реактор не будет производить высокий уровень радиоактивных отходов. И в отличие от установок по производству ископаемого топлива, термоядерная энергия слияния не генерирует парниковых газов, углекислого газа или других загрязнителей.
Ядерное деление
В термоядерном реакторе выделяется энергия при синтезе лёгких ядер (водорода, гелия и лития). Чтоб два ядра водорода (на практике – дейтерия и/или трития, то есть изотопов водорода) сошлись на достаточно близкое расстояние, чтобы преодолеть кулоновское отталкивание одноименно заряженных ядер, необходимо создать либо огромное давление, либо крайне высокую температуру.
В термоядерном реакторе нет ничего самопроизвольного, поэтому он безопаснее. Любое неконтролируемое повреждение и исчезают условия, необходимые для термоядерного синтеза.
Термоядерный синтез
Атомный термоядерный реактор использует сверхпроводящие магниты для плавления атомов водорода и получения большого количества тепла. Будущие атомные термоядерные электростанции могут затем использовать эту теплоту для привода турбин и выработки электроэнергии.
Экспериментальный реактор не будет использовать обычные атомы водорода, ядра которых состоят из одного протона. Вместо этого он будет взрывать дейтерий, ядра которого имеют один протон и один нейтрон, с тритием, ядра которых имеют один протон и два нейтрона. Дейтерий легко извлекается из морской воды, а тритий будет сгенерирован внутри термоядерного реактора. Поставки этих видов топлива достаточно велики, достаточно на миллионы лет при нынешнем глобальном потреблении энергии.
И в отличие от реакторов деления, термоядерное синтезирование является очень безопасным: если реакции термоядерного синтеза нарушаются в пределах завода по термоядерному синтезу, термоядерные реакторы просто отключаются безопасно и без необходимости внешней помощи, отметил проект ITER. Теоретически, плавильные установки также используют только несколько граммов топлива одновременно, поэтому нет возможности аварии расплава.
Создание проекта ИТЭР и запуск реактора
Проект ITER берет свое начало в 1985-м году, когда Советский Союз предложил совместное создание токамака — тороидальной камеры с магнитными катушками, которая способно удерживать плазму при помощи магнитов, тем самым создавая условия, требуемые для протекания реакции термоядерного синтеза. В 1992-м году было подписано четырехстороннее соглашение о разработке ИТЕР, сторонами которого выступили ЕС, США, Россия и Япония. В 1994-м году к проекту присоединилась Республика Казахстан, в 2001-м – Канада, в 2003-м – Южная Корея и Китай, в 2005-м — Индия. В 2005-м году было определено место для постройки реактора – исследовательский центр ядерной энергетики Кадараш, Франция.
Строительство реактора началось с подготовки котлована для фундамента. Так параметры котлована составили 130 х 90 х 17 метров. Весь комплекс с токамаком будет весить 360 000 тонн, из которых 23 000 тонн приходится на сам токамак.
Различные элементы комплекса ИТЕР будут разрабатываться и доставляться на место строительства со всех уголков мира. Так в 2016-м году в России была разработана часть проводников для полоидальных катушек, которые далее отправились в Китай, который будет производить сами катушки.
Очевидно, столь масштабную работу совсем непросто организовать, ряд стран неоднократно не поспевали за поставленным графиком проекта, в результате чего запуск реактора постоянно переносился. Так, согласно прошлогоднему (2016 г.) июньскому сообщению: «получение первой плазмы запланировано на декабрь 2025-го года».
Строительство ИТЭР в 2016 году
Избранное
См. также
Термоядерный реактор: начало сборки
Мария Роговая • Библиотека • «Коммерсантъ Наука» №24, сентябрь 2020
Физтех — Международному термоядерному реактору
Михаил Петров, Валерий Афанасьев, Евгений Мухин, Александр Шевелев • Библиотека • «Природа» №9, 2018
Третий путь атомной энергетики
Роман Фишман • Библиотека • «Популярная механика» №9, 2019
О настоящем и будущем термоядерной энергетики
Александр Бурдаков • Библиотека • «Наука из первых рук» №5–6(76), 2017
Неукротимая плазма ITER
Татьяна Пичугина • Библиотека • «Троицкий вариант» №19, 2016
На пути к термоядерной энергетике
17.05.2009 • Кристофер Ллуэллин-Смит • Видеотека
Энергетика будущего: управляемый термоядерный синтез
27.11.2008 • Игорь Семенов • Видеотека
«Национальная поджигательная установка» резко повысила эффективность термоядерного синтеза
17.02.2014 • Игорь Иванов • Новости науки
Звезды на земле: термояд
Игорь Егоров • Библиотека • «Популярная механика» №5, 2012
Приключения термояда в пузырьке
Сергей Комаров • Библиотека • «Химия и жизнь» №4, 2015
Статья недели: ИИ помог обнаружить китайских рыбаков-браконьеров
Ученые из Южной Кореи, Японии, Австралии и США смогли обнаружить 900 китайских судов, которые незаконно ловили тихоокеанского кальмара в водах КНДР. Согласно резолюции Совбеза ООН, с 2017 года эта страна не должна разрешать иностранным судам рыбачить на своей территории.
Научный журнал Science Advances опубликовал подробную статью об этом. Чтобы обнаружить браконьеров, ученые использовали Автоматическую идентификационную систему (АИС), а также несколько видов спутниковых снимков. С помощью АИС корабли передают данные о своем местоположении и курсе. Этой системой пользуются не все суда, поэтому основную информацию исследователи получили, проанализировав изображения. Браконьеры часто используют яркие лампы, чтобы ночью привлечь кальмаров на поверхность воды. Ученые натренировали нейросеть распознавать свет на поверхности океана. Затем информацию проверяли при помощи снимков высокой четкости. Помимо крупных судов, нейросеть также нашла 3 тыс. небольших рыбацких лодок.
Ученые считают, что их метод поможет бороться с браконьерством, а значит, защитить многие виды рыб от угрозы вымирания.
Открытие атомной энергии
Отто Хан
В 1938 году немецкие физики Отто Хан и Фриц Штрассман бомбардировали атом урана нейтронами в попытке образовать тяжелые элементы. Но ядро урана распалось на более лёгкие элементы барий и криптон, что значительно меньше, чем уран. Ученые озадачились неожиданными результатами так как открыли расщепление ядра.
Австрийский физик Лиза Мейтнер, бежавшая в Швецию после вторжения Гитлера в ее страну, поняла, что расщепление ядра также освобождает энергию. Работая над этой проблемой, она установила, что деление дает минимум два нейтрона. В конечном счете, другие физики поняли, что каждый вновь освобожденный нейтрон может продолжать вызывать две отдельные реакции, каждая из которых может вызвать по крайней мере еще. Один удар может запустить цепную реакцию, управляя выпуском еще большей энергии.
Атомная эра
По использованию в качестве источника энергии урана в мире существует резкая дифференциация. Всего сейчас работает 191 ядерная электростанция с 451 ядерным реактором (еще 60 реакторов находятся в стадии строительства). Из этого числа 100 реакторов построены в США и дают этой стране 20% электроэнергии. В России 36 реакторов дают почти пятую часть электроэнергии. Есть страны, в которых ядерная энергия — это треть энергии в ее общем балансе (Южная Корея, Финляндия). Имеются страны, где эта доля — почти половина всей энергии (Словакия, Украина). А вот в Китае и Индии доля ядерной энергии в общем балансе меньше 5%. Совсем не используется ядерная энергия в Австралии, в большинстве стран Южной и Центральной Америки и в многочисленных мелких государствах Океании. Опережает все страны по этому показателю Франция, в которой 58 ее ядерных реакторов производят 77% всей вырабатываемой в стране электроэнергии. Неслучайно статья в Википедии об экономике Франции начинается словами: «Франция — высокоразвитая страна, ядерная и космическая держава».
Отчасти это объясняется тем обстоятельством, что во Франции еще в 30-е годы прошлого века начали развиваться работы по ядерной физике. Ирен и Фредерик Жолио-Кюри (как и Энрико Ферми в Италии) стали нобелевскими лауреатами за получение новых изотопов («меченых атомов»). Но они не поняли, что в их опытах наблюдалась также реакция деления урана. Об этом догадались немецкие радиохимики и физики О. Ган, Ф. Штрассманн, Л. Мейтнер. Началась атомная эра. Энрико Ферми продолжал работы с ураном уже в США. Он изобрел и построил ядерный реактор, где в ноябре 1942 года впервые в мире была осуществлена цепная ядерная реакция деления урана. Но целью создания первых реакторов было не выработка электроэнергии, а получение плутония, искусственного трансуранового элемента, способного, как и уран, к взрывному осуществлению реакции деления.
После окончания войны и ужасных августовских событий 1945 года в Хиросиме и Нагасаки интересы многих физиков-ядерщиков сосредоточились на мирном использовании энергии деления. Их вдохновлял и запуск в 1954 году первой в мире ядерной электростанции в СССР. В реакторостроении Франция вскоре стала мировым лидером. Возможно, в этом немалую роль сыграли и почти полное отсутствие во Франции секретности ядерных исследований, и большой интерес к этим исследованиям французского правительства. На юге Франции, в маленьком городке Кадараш в 60 километрах от Марселя был создан мощный научный центр ядерной физики.
И именно там, неподалеку от Кадараша, в 2006 году было намечено построить ИТЭР — международный термоядерный экспериментальный реактор. Огромную строительную площадку размером с 400 футбольных полей было решено создать в лесном массиве, поскольку вся безлесная сельскохозяйственная округа была арендована частными владельцами. Первое дерево было срублено 29 января 2007 года. Но перед этим несколько лет уточнялись научные предпосылки строительства реактора и почти пять лет разрабатывался технический проект сооружения. Много времени ушло и на организацию финансирования проекта и создание управляющих органов. Первоначально планировалось запустить реактор в 2022 году и затратить 5 миллиардов долларов. Но в 2012 году проект был пересмотрен, сроком окончания строительства был намечен 2025 год, а предполагаемая сумма затрат возросла до 20 миллиардов долларов. Сейчас пройдена половина дистанции, и панорама строительства поражает воображение.
Кто же затеял и осуществил проект этой грандиозной стройки, поистине «стройки ХХI века»? Как возникла система финансирования и изготовления многочисленных узлов и агрегатов будущего реактора?
Принцип работы ядерного (атомного) реактора
У любого ядерного реактора есть несколько частей: активная зона с топливом и замедлителем, отражатель нейтронов, теплоноситель, система управления и защиты. В качестве топлива в реакторах чаще всего используются изотопы урана (235, 238, 233), плутония (239) и тория (232). Активная зона представляет собой котел, через который протекает обычная вода (теплоноситель). Среди других теплоносителей реже используется «тяжелая вода» и жидкий графит. Если говорить про работу АЭС, то ядерный реактор используется для получения тепла. Само электричество вырабатывается тем же методом, что и на других типах электростанций — пар вращает турбину, а энергия движения преобразуется в электрическую энергию.
Приведем ниже схему работы ядерного реактора.
Схема ядерного реактора на АЭС
Как мы уже говорили, при распаде тяжелого ядра урана образуются более легкие элементы и несколько нейтронов. Образовавшиеся нейтроны сталкиваются с другими ядрами, также вызывая их деление. При этом количество нейтронов растет лавинообразно.
Здесь нужно упомянуть коэффициент размножения нейтронов. Так, если этот коэффициент превышает значение, равное единице, происходит ядерный взрыв. Если значение меньше единицы, нейтронов слишком мало и реакция угасает. А вот если поддерживать значение коэффициента равным единице, реакция будет протекать долго и стабильно.
Цепная реакция
Вопрос в том, как это сделать? В реакторе топливо находится в так называемых тепловыделяющих элементах (ТВЭЛах). Это стержни, в которых в виде небольших таблеток находится ядерное топливо. ТВЭЛы соединены в кассеты шестигранной формы, которых в реакторе могут быть сотни. Кассеты с ТВЭЛами располагаются вертикально, при этом каждый ТВЭЛ имеет систему, позволяющую регулировать глубину его погружения в активную зону. Помимо самих кассет среди них располагаются управляющие стержни и стержни аварийной защиты. Стержни изготовлены из материала, хорошо поглощающего нейтроны. Так, управляющие стержни могут быть опущены на различную глубину в активной зоне, тем самым регулируя коэффициент размножения нейтронов. Аварийные стержни призваны заглушить реактор в случае чрезвычайной ситуации.
ТВЭЛы, помещенные в топливную кассету
Преимущества и недостатки
Хотя рентабельность данной установки еще находится под вопросом, согласно работам многих исследователей – создание и последующее развитие технологии управляемого термоядерного синтеза может в результате дать мощный и безопасный источник энергии. Рассмотрим некоторые положительные стороны подобной установки:
- Основным топливом термоядерного реактора является водород, а это означает – практически неисчерпаемые запасы ядерного топлива.
- Добыча водорода может происходить посредством переработки морской воды, которая доступна большинству стран. Из этого следует невозможность возникновения монополии топливных ресурсов.
- Вероятность аварийного взрыва в процессе работы термоядерного реактора значительно меньше, чем в процессе работы ядерного реактора. Согласно оценкам исследователей, даже в случае аварии выбросы радиации не будут представлять опасности для населения, а значит отпадает и надобность в эвакуации.
- В отличие от ядерных реакторов, термоядерные реакторы вырабатывают радиоактивные отходы, которые имеют короткий период полураспада, то есть быстрее распадаются. Также в термоядерных реакторах отсутствуют продукты сгорания.
- Для работы термоядерного реактора не требуются материалы, которые используются также для ядерного оружия. Это позволяет исключить возможность прикрытия производства ядерного оружия путем оформления материалов для нужд ядерного реактора.
Термоядерный реактор — вид изнутри
Однако, существует также ряд технических недоработок, с которыми постоянно сталкиваются исследователи.
Например, нынешний вариант топлива, представленный в виде смеси дейтерия и трития, требует разработки новых технологий. Например, по окончанию первой серии тестов на крупнейшем на сегодняшней день термоядерном реакторе ДЖЕТ, реактор стал настолько радиоактивным, что далее потребовалась разработка специальной роботизированной системы обслуживания для завершения эксперимента. Другим неутешительным фактором работы термоядерного реактора является его КПД – 20%, в то время как КПД АЭС – 33-34%, а ТЭС — 40%.
Термоядерный реактор ДЖЕТ
Диагностика сердца ИТЭР
Россия строит чуть менее 10% реактора ИТЭР. Каждый день участники по несколько часов ведут обсуждение деталей проекта на онлайн-конференциях по темам, касающимся конкретных групп ученых и определенных стран. Автору этого текста пришлось покинуть кабинет как раз с началом такого онлайн-совещания, так и не успев задать эксперту всех вопросов. Зато интервью завершилось неожиданной экскурсией в чистый зал, где новосибирские физики уже сконструировали помещение для создания порт-плагов — бункеров размером с танк Т-60 и начиненных тысячами датчиков для измерения всех необходимых параметров горения плазмы. Это десятки тысяч видов различных измерений. Чаще всего это томографические измерения для постоянной фиксации и выявления различных характеристик плазмы. Через отдельные порты будет происходить собственно нагрев плазмы. Таких «танков» на реакторе 28, каждый — для решения своих задач. Все они будут закреплены непосредственно на вакуумной камере, поэтому их вес не должен превышать 50 тонн.
Четыре порт-плага (три верхних и один более крупный — экваториальный) создает Институт ядерной физики им. Г. И. Будкера СО РАН. В каждом порт-плаге своими измерениями займутся разные группы ученых из нескольких стран. В порт-плагах, сделанных в Новосибирске, предстоит работать научным группам из России, Европы, Индии, Кореи и США. Задача сибиряков — интегрировать абсолютно разные технологии измерения в единый комплекс, при этом не превысив параметры порт-плагов ни по массе, ни по занимаемой площади внутри бункера. Ученые из ФТИ имени Иоффе планируют регистрировать в плазме атомы перезарядки, ученые из Кореи — измерять уровень ультрафиолетового излучения, а американские специалисты собираются проводить СВЧ-диагностику плазмы.
Организации из перечисленных стран-участниц займутся сборкой порт-плага непосредственно в ИЯФ СО РАН. Для сборки таких объектов нужны, с одной стороны, огромная грузоподъемность кранов для перемещения и различных манипуляций с многотонными комплектующими, с другой — необходимо чистое помещение, чтобы на прецизионно точное оборудование не попала пыль. Зал с такими уникальными характеристиками, вероятно, будет похож на гигантскую операционную. Такое сравнение выглядит особенно уместно, если иметь в виду, что вакуумная камера с порт-плагами — это сердце ИТЭР, а постоянные измерения — это диагностика, необходимая для его жизни.
С этой целью в ИЯФ создали огромный зал и оснастили его подвесным краном и промышленными системами фильтрации поступающего воздуха. При открывании люка для загрузки оборудования с улицы из помещения наружу поступает сильный встречный поток воздуха, который не допускает попадания пыли внутрь зала. Первые испытания пройдут на макетах. Начало сборки запланировано на 2022–2023 годы.
Определение деления
Атом содержит протоны и нейтроны в своем центральном ядре. При делении ядро расщепляется либо путем радиоактивного распада, либо из-за того, что оно подверглось бомбардировке другими субатомными частицами, известными как нейтрино. Полученные части имеют меньшую комбинированную массу, чем исходное ядро, при этом недостающая масса превращается в ядерную энергию. Контролируемое деление происходит, когда очень легкий нейтрино бомбардирует ядро атома, разбивая его на два меньших, похожих по размеру ядра. Разрушение высвобождает значительное количество энергии — в 200 раз больше энергии нейтронов, которые начали процедуру — а также высвобождает по крайней мере еще два нейтрино.
Контролируемые реакции такого рода используются для высвобождения энергии на атомных электростанциях. Неконтролируемые реакции используются в ядерном оружии.
Радиоактивное деление, где центр тяжелого элемента самопроизвольно испускает заряженную частицу, когда распадается на меньшее ядро, происходит только с тяжелыми элементами.
Разделение отличается от процесса слияния, когда два ядра соединяются друг с другом, а не разделяются друг от друга. Слияние под воздействием температуры – термоядерный синтез.
Управляемый синтез
Практически одновременно с созданием водородной бомбы встала задача осуществления на Земле контролируемого, «прирученного» процесса термоядерного синтеза без ядерного взрыва. Был выдвинут ряд идей создания сверхвысокой начальной температуры — использование концентрации многих лазерных лучей или электронных пучков. Одно время даже обсуждалась идея «холодного» термоядерного синтеза. Но наиболее серьезные исследования были связаны с возможностью создания сверхвысокой температуры с помощью мощного электрического разряда в водородной плазме.
Одна из первых идей была выдвинута в 1950 году в СССР военнослужащим, сержантом Олегом Лаврентьевым (1926–2011). Он не имел в это время даже законченного среднего образования, но его мечтой было стать физиком. На свои скудные сержантские средства он выписывал научные и научно-популярные журналы и покупал учебники по физике. Лаврентьев послал в адрес правительства и Академии наук письма с изложением своей идеи получения термоядерной энергии. Эта идея заключалась в создании кругового электрического разряда в водороде, термоизоляция которого обеспечивалась бы электрическими силами отталкивания. Письма О. Лаврентьева были переданы в организации, занимавшиеся ядерными взрывами, и в конце концов попали к И. Е. Тамму и А. Д. Сахарову, которые в это время работали над созданием водородной бомбы. Они организовали демобилизацию О. Лаврентьева и его приезд в Москву, получение им среднего образования и поступление на физический факультет МГУ. Но сама идея Лаврентьева оказалась несостоятельной. Электрические поля не могли обеспечить устойчивое состояние кругового разряда. Лаврентьев и сам убедился в этом. Впоследствии, получив физическое образование, он работал в научных институтах, занимаясь ядерной физикой.
Тамм и Сахаров использовали рациональное зерно лаврентьевской идеи. В водородной плазме электрический ток действительно должен быть кольцевым, а сама плазма должна представлять собой тор (баранку). Но удерживать круговой ток в пространстве могло только магнитное поле особой конфигурации — линии индукции этого поля должны как бы обвивать плазменный тор. Ученые назвали такое поле тороидальным. Воплощение в жизнь этой идеи было связано с решением многих научных и инженерных задач. И в уже далеком 1951 году в созданном главным научным руководителем урановой проблемы в СССР И. В. Курчатовым секретном научном институте, называвшемся тогда Лаборатория № 2 АН СССР или Лаборатория измерительных приборов, а попросту ЛИПАН или «двойка», появилось подразделение, которое начало воплощать в жизнь идею Тамма и Сахарова. Сегодня «двойка» превратилась в огромный Национальный исследовательский центр «Курчатовский институт», а подразделение, в котором начались работы по термояду, стало проектным центром ИТЭР, входящим в национальное агентство России по ИТЭР и в госкорпорацию «Росатом».
В 1951 году руководителями работ по осуществлению лабораторного термоядерного синтеза стали сотрудники И. В. Курчатова Л. А. Арцимович и И. Н. Головин — один из главных координаторов «мозгового штурма» проблемы. С 1973 года руководителем работы стал Б. Б. Кадомцев, а с 1975 года — Е. П. Велихов.
Перспектива проекта
В данный момент происходит постройка комплекса ИТЭР и производство всех требуемых компонентов для токамака. После запланированного запуска токамака в 2025-м году начнется проведение ряда экспериментов, на основе результатов которых будут отмечены аспекты, требующие доработки. После успешного ввода в строй ИТЭР планируется постройка электростанции на основе термоядерного синтеза под названием DEMO (DEMOnstration Power Plant). Задача DEMo состоит в демонстрации так называемой «коммерческой привлекательности» термоядерной энергетики. Если ITER способен вырабатывать всего 500 МВт энергии, то DEMO позволит непрерывно генерировать энергию в 2 ГВт.
Однако, следует иметь ввиду, что экспериментальная установка ИТЭР не будет вырабатывать энергию, а ее предназначение состоит в получении чисто научной выгоды. А как известно, тот или иной физический эксперимент может не только оправдать ожидания, но также и принести человечеству новые знания и опыт.