Дуют ли ветры на марсе
Содержание:
- Карусель
- Проблемы колонизации Марса
- Поверхность Марса
- Нюансы магнитного поля
- Из истории исследования Марса
- Космическое излучение
- Подходящая ракета-носитель
- Марсианские пустыни
- Сверхзвуковая ТДУ
- Рассматриваемые методы колонизации Марса
- Марсианские пыльные бури
- Особенности силы тяжести
- Нюансы магнитного поля
- Чем мы будем питаться?
- Венера
- Терраформирование Марса
- Первые марсианские программы
- Искусственная гравитация
- В центре Солнечной системы
- Структура и состав Земли и Марса
- Интересные факты
- Во что мы будем одеваться?
Карусель
Каждый знает, как вращение карусели воздействует на тело. Поэтому устройство искусственной гравитации по этому принципу кажется наиболее реальным.
Все, что находится в диаметре карусели, стремится выпасть из нее со скоростью, примерно равной скорости вращения. Выходит, что на тела действует сила, направленная вдоль радиуса вращающегося объекта. Это очень похоже на гравитацию.
Итак, требуется корабль, имеющий цилиндрическую форму. При этом он должен вращаться вокруг своей оси. Между прочим, искусственная гравитация на космическом корабле, созданная по этому принципу, достаточно часто демонстрируется в научно-фантастических фильмах.
Бочкообразный корабль, вращаясь вокруг продольной оси, создает центробежную силу, направление которой соответствует радиусу объекта. Чтобы вычислить получаемое ускорение, требуется разделить силу на массу.
Знающим физику людям посчитать это будет совсем не сложно: a = ω²R.
В этой формуле результат расчетов – ускорение, первая переменная – узловая скорость (измеряется в количестве радиан в секунду), вторая – радиус.
Согласно этому, для получения привычной нам g, необходимо грамотно сочетать угловую скорость и радиус космического транспорта.
Подобная проблема освещена в таких фильмах, как «Интерсолах», «Вавилон 5», «2001 год: Космическая одиссея» и подобных им. Во всех этих случаях искусственная гравитация приближена к земному ускорению свободного падения.
Как бы ни была хороша идея, реализовать ее достаточно сложно.
Проблемы колонизации Марса
Гравитация на Марсе составляет около 40% земной, приспособиться к ней будет довольно трудно. Согласно отчету NASA, последствия влияния микрогравитации на тело человека довольно глубоки, ежемесячные потери мышечной массы доходят до 5%, а плотности костей — до 1%.
На поверхности Марса эти потери будут ниже, поскольку там есть некоторая гравитация. Но постоянные поселенцы будут сталкиваться с проблемами дегенерации мышц и остеопороза в долгосрочной перспективе.
Также есть вопрос атмосферы, которая непригодна для дыхания. Порядка 95% атмосферы планеты составляет углекислый газ, а это значит, что в дополнение к производству пригодного для дыхания воздуха для колонистов, они также не смогут выходить наружу без сдавливающих скафандров и кислородных баллонов.
Марс также не имеет глобального магнитного поля, сравнимого с геомагнитным полем Земли. В сочетании с тонкой атмосферой это означает, что поверхности Марса может достигать значительное количество ионизирующего излучения.
Благодаря измерениям, сделанным космическим кораблем Mars Odyssey (инструмент MARIE), ученые выяснили, что уровень радиации на орбите Марса в 2,5 раза выше, чем на Международной космической станции. На поверхности этот уровень должен быть ниже, но все равно остается слишком высоким для будущих поселенцев.
В одной из последних работ, представленных группой ученых MIT, анализирующих план Mars One по колонизации планеты, которая начнет в 2020 году, подсчитано, что первый астронавт задохнется уже через 68 дней, в то время как остальные умрут от голода, обезвоживания или выгорания в богатой кислородом атмосфере.
Поверхность Марса
Площадь всей марсианской поверхности примерно равна площади всей земной суши. Марс на небе выглядит красной звездой, отчего и получил название Красной планеты. Да и в телескоп он тоже красный, и даже на орбитальных фотографиях этот цвет преобладает. Это объясняется большим количеством оксида железа, который содержится в породе под названием маггемит. Из-за неё вся планета имеет «ржавый» цвет.
Под поверхностью есть залежи водяного льда – это доказанный факт. А на поверхности есть минералы, которые могли образоваться только в воде, так что Марс не всегда был сухим, по нему текла вода, притом много. Обнаружены русла рек, промытые на десятки километров. Есть свидетельства, что и в настоящее время на Марсе иногда возникают потоки воды, когда тают полярные шапки.
Особенности поверхности – множество кратеров от упавших метеоритов, большие долины и полярные шапки. На Марсе есть много вулканов, в том числе Олимп – крупнейший вулкан в Солнечной системе, высотой 27 км от основания или 25 км от среднего уровня, и диаметром в 600 км.
Если смотреть на Марс в мощный телескоп, можно заметить, что 2/3 его поверхности более светлые – их называют материками. Остальная треть более темная – эти области называют морями. Конечно, эти моря – просто безжизненные пустыни, где нет ни капли воды, но названия прижились.
Кстати, несмотря на частые пылевые бури на Марсе, темные области никогда не исчезают. Раньше считали, что на них есть растительность, которая не заносится или каждый раз возрождается снова. Сейчас считается, что это просто особенности рельефа – много кратеров и холмов, которые становятся препятствием для ветров, и на которых песок не задерживается.
Моря в основном расположены в южном полушарии, а в северном их всего два – Ацидолийское и Большой Сирт. Южное полушарие вообще сильно отличается от северного. Оно более возвышено – на 1-2 км от среднего уровня, и богато кратерами. А вот в северной половине поверхность планеты, наоборот, ниже, и в основном гладкая – здесь расположены обширные равнины. Почему они так отличаются, ученые спорят до сих пор.
По одной из теорий, вся равнинная северная часть, которая занимает 40% поверхности, может быть кратером от удара очень большого тела, размером с Плутон. Тогда это крупнейший кратер в Солнечной системе, размером 8х10 тысяч километров. Кстати, на планете Марсе итак находится самый крупный известный кратер в Солнечной системе – Эллада, размером в 2300 км и глубиной в 9 км.
На поверхности Марса много следов эрозии от протекавших когда-то лавовых и водных потоков. Есть много разломов, следов оползней, затоплений лавой или водой. Есть места с очень сложным, хаотичным рельефом, которые называются хаосами, из них самый большой хаос Авроры длиной более 700 км.
Каньоны на Марсе. Район хаоса Авроры.
Если южное полушарие богато кратерами, то северное – равнинами и вулканами. Эти ровные поверхности, возможно, во многом возникли благодаря морям растекавшейся когда-то лавы.
Одна из вулканических областей – Фарсида, возвышена на 10 км над средним уровнем, и простирается на 2000 км. На ней находятся очень крупные вулканы, а на краю – крупнейший вулкан Олимп.
Вулкан Олимп даже из космоса выглядит очень внушительно.
Фарсида пересекается тектоническими разломами, и крупнейший из них – долина Маринер, длиной в 4000 км, шириной в 600 км, и глубиной до 10 км. На краях происходят самые крупные в Солнечной системе оползни, а долина – самый крупный известный канон.
Долина Маринер — самый большой каньон в Солнечной системе.
Как видите, планета Марс богата на достопримечательности. Здесь много чего интересного – самый большой каньон с самыми большими оползнями, самый большой вулкан, самый большой кратер… Пылевые бури здесь тоже самые большие, но о них дальше.
Нюансы магнитного поля
На Марсе, как известно, не имеется магнитосферы. Но есть некоторые остатки магнетизма, значения которых в 500 раз меньше, нежели напряжённость земного «собрата». Основная задача этого слоя заключается в обеспечении защиты от проникновения на поверхность солнечного ветра и радиации из космоса.
Ядро Земли вращается, что приводит к созданию в магме токов. За счёт них происходит генерация особой магнитной напряжённости. На соседней планете данный механизм отсутствует. Поэтому на ней не имеется атмосферы, и наблюдается повышенный уровень радиации.
Тем не менее, учёные, изучающие красную планету, а в частности гравитация на Марсе, отмечают, что есть очевидные признаки существования магнитного поля на планете в прошлом, причём оно справлялось с возложенными на него функциями. И только порядка 3,2 млрд лет тому назад произошло прекращение этого процесса по неизвестным причинам. Возможно притяжение на Марсе как-то на это влияет.
Из истории исследования Марса
Первые наблюдения планеты проводились еще до изобретения телескопа. Существование Марса было зафиксировано в 1534 году до нашей эры древнеегипетскими астрономами. Они же рассчитали траекторию движения планеты. В вавилонской теории положение Марса на ночном небе было уточнено, были впервые получены временные измерения планетарного движения.
Карту поверхности Марса первым составил голландский астроном Х. Гюйгенс. Несколько рисунков, на которых было отображены темные области, он сделал в 1659 году. Существование ледяной шапки на полюсах предположил итальянский астроном Дж. Кассини в 1666 году. Он же вычислил период вращения планеты вокруг своей оси — 24 часа 40 минут. Он правильного значения этот результат отличается менее чем на три минуты.
С шестидесятых годов прошлого столетия к Марсу были направлены несколько АМС. С помощью орбитальных и наземных телескопов продолжалось дистанционное зондирование планеты с Земли для определения состава поверхности, исследования состава атмосферы и измерения скорости света.
Магнитное поле Марса, которое в пятьсот раз слабее земного, было зафиксировано станциями «Марс-2» и «Марс-3» в советское время. Космические аппараты «Марс-2» и «3» были запущены в 1971 году. Главная техническая задача не была решена, но научные исследования все равно оказались передовыми для своего времени.
Американцы запускали к Марсу «Маринер-4» в 1964 году. Космический аппарат сделал снимки поверхности и исследовал состав атмосферы. Первым искусственным спутником планеты стал «Маринер-9», запущенный в 1971 году. Поиск жизни в пробах грунта проводился в 1975 году двумя идентичными космическими аппаратами в рамках программы «Викинг». В дальнейшем для систематического исследования планеты использовались возможности телескопа «Хаббл».
Космическое излучение
Ультрафиолетовое излучение было легко блокировано алюминием командных модулей программы «Аполлон», но во время поездок на Луну космонавты постоянно жаловались на внезапные, мгновенные вспышки яркого голубого или белого света. Свет не причинял астронавтам особого вреда и не вызывал боль.
Ученые выяснили, что было причиной этих «космических лучей». Это вовсе не лучи, а субатомные частицы, в основном одиночные протоны, путешествующие почти со скоростью света. Они проникают в космических корабли и технически оставляют отверстия в материале, сквозь который проходят, но не вызывают утечек, поскольку протоны меньше атомов.
Подходящая ракета-носитель
Долететь до Марса — непростая задача.
Система Космических Запусков (Space Launch System, SLS) является в настоящий момент крупнейшей находящейся в разработке ракетой-носителем, которую планируют использовать в ближайшем будущем. Именно эту ракету Запад планирует использовать для пилотируемых миссий на Марс.
Согласно текущим планам NASA, для одной пилотируемой миссии на Марс потребуется с десяток ракет SLS. Однако нынешняя наземная инфраструктура для запусков SLS лишь по минимальным параметрам соответствует необходимым условиям: необходимо иметь как минимум одно помещение для сборки ракеты, один гигантский транспортер для доставки ракеты на стартовую площадку и собственно одну стартовую площадку.
Если хотя бы один из этих компонентов сломается или не справится со своей задачей, то возникнут серьезные опасения по поводу доступности необходимой ракеты-носителя, что в свою очередь поставит под вопрос саму возможность пилотируемой миссии на Марс.
Например, любые задержки, связанные с настройкой и проверкой всех систем SLS, могут внести серьезные изменения в графики пусков. Такие же проблемы могут создать и менее значительные технические проблемы и даже погодные условия.
Кроме того, стыковка на орбите, необходимая для сборки космического аппарата, который отправится на Марс, требует соблюдения так называемого окна запуска, то есть времени, в рамках которого будет осуществляться запуск ракеты. Помимо этого, запуск корабля к Марсу уже непосредственно с самой орбиты Земли тоже требует соблюдения определенных временных рамок. На основе исторических данных о ранних запусках шаттлов ученые разработали целые модели запусков. Они показывают отсутствие уверенности в том, что ракета SLS будет доступна к определенном пусковому окну, что в свою очередь тоже может поставить крест на любой пилотируемой миссии на Марс.
Марсианские пустыни
Пустыни на красной планете напоминают земные — песчаные и арктические. Вокруг полюсов располагаются обширные пространства, покрытые льдом. Марсианскую пыль и «снег», состоящий из двуокиси углерода, потоки воздушных масс складывают в барханы и дюны высотой около 15 м.
Песчаные дюнные и барханные гряды покрывают многие марсианские долины и дно кратеров. Они могут иметь как продольную, так и поперечную ориентацию. Такие рельефные формы внешне похожи на аналогичные образования в Сахаре. Это позволяет ученым предположить, что условия их образования на Земле и Марсе были одинаковыми.
Сверхзвуковая ТДУ
Одним из основных способов снизить скорость посадочного марсианского модуля для мягкой стыковки с марсианской поверхностью является система сверхзвуковой тормозной двигательной установки (ТДУ). Суть ее заключается в использовании направленных в сторону движения реактивных двигателей для замедления аппарата со сверхзвуковых скоростей.
Использование сверхзвуковой ТДУ в тонкой разряженной атмосфере Марса является обязательным условием. Однако запуск двигателей сверхзвуковых мощностей может создать ударную волну, которая может повредить марсианский посадочный модуль. У NASA, например, практически нет опыта использования подобных процедур, что, в свою очередь, уменьшает шансы на успешность всей миссии.
Данная технология имеет три проблемных аспекта. Во-первых, эффект взаимодействия между воздушным потоком и выхлопными газами двигателей могут в буквальном смысле развалить посадочный модуль пополам. Во-вторых, тепло, генерируемое выхлопом отрабатываемого ракетного топлива, может нагреть посадочный модуль. В-третьих, сохранить стабильность посадочного модуля при запуске сверхзвуковых ТДУ может быть очень непростой задачей.
Несмотря на проведенные ранее мелкомасштабные испытания таких ТДУ с использованием аэродинамических труб, требуется проведение множества полномасштабных тестовых испытаний для определения надежности такой системы. Это очень дорогая и длительная задача. Однако у того же NASA, возможно, имеется и альтернативный (непрямой) вариант испытаний подобных систем. Американская частная компания SpaceX активно пытается разработать многоразовую ракету, которая использует аналогичный принцип посадки. И следует отметить, что успехи в этом направлении есть.
Рассматриваемые методы колонизации Марса
За последние десятилетия возникало множество предложений о способах создания колоний на Марсе. В 1964 году Дандридж Коул выступал за активацию парникового эффекта – доставка аммиачных льдов на поверхность планеты. Это мощный парниковый газ, поэтому должен загустить атмосферу и повысить температуру Красной планеты.
Ученым удалось вывести скорость потери воды через измерение соотношения воды в сегодняшнем состоянии и моделями 4.3 млрд. лет назад
Еще один вариант – уменьшение альбедо, где марсианскую поверхность покроют темным материалом, чтобы сократить поглощение звездных лучей. Эту идею поддерживал Карл Саган. В 1973 году он даже предложил два сценария для этого: доставка низколегированного материала и посадку темных растений на полярных территориях, чтобы расплавить ледяные шапки.
В 1982 году Кристофер Маккей написал статью о концепции саморегулируемой марсианской биосферы. В 1984 году Д. Лавлок и М. Албаби предложили импортировать хлорфторуглероды, чтобы создать глобальное потепление.
Художественная интерпретация возможных растений, согревающих Красную планету
В 1993 году Роберт Зубрин и Кристофер Маккей предложили разместить орбитальные зеркала, которые бы увеличили нагрев. Если расположить их возле полюсов, то можно было бы расплавить ледяные запасы. Также они голосовали за использование астероидов, которые при ударах накаляют атмосферу.
В 2001 году поступила рекомендация о применении фтора, который в качестве парникового газа в 1000 раз эффективнее СО2. Причем эти материалы можно добывать на Красной планете, а значит можно обойтись без земных поставок. Нижний рисунок демонстрирует концентрацию метана на Марсе.
Исследователи НАСА отметили колебания метановой концентрации в атмосфере. Это говорит о том, что он все время пребывает и убывает
Также предлагали доставлять метан и прочие углеводороды из внешней системы. Их много на Титане. Есть идеи по созданию закрытых биодомов, где будут использовать кислородосодержащие цианобактерии и водоросли, посаженные в марсианскую почву. В 2014 году проводили первые испытания и ученые продолжают развивать концепцию. Такие конструкции способны создать определенные кислородные запасы.
Процесс «марсианского озеленения» включает импорт газов и земных организмов для планетарных трансформаций
Марсианские пыльные бури
Последовательность развития пылевой бури на Марсе. Credit: MARCI.
Локальные пыльные вихри образуются на Марсе постоянно.
Их появлению способствуют наличие мелкодисперсной пыли и разреженность атмосферы, которая позволяет мелким частицам грунта подниматься на большую высоту.
Эти процессы активизируются, когда планета находится ближе к Солнцу.
Ежегодно на Марсе бушуют пыльные бури. Чаще они покрывают площадь размером с земной континент, но иногда принимают глобальный характер и охватывают всю поверхность планеты. Такие катаклизмы происходят каждые 6-8 лет.
Бури на Марсе отслеживаются учеными уже более ста лет. В наше время для этого используют марсианские и космические станции. Это позволяет зафиксировать важные параметры и сделать четкие фотоснимки. Последняя глобальная буря наблюдалась в 2018 г. Она началась в июне и длилась до середины сентября. В этом случае интервал между глобальными ураганами составил 11 лет.
В результате погодного катаклизма была прервана связь с марсоходом NASA Opportunity, который из-за пыли, покрывшей солнечные батареи, впал в спящий режим и с тех пор не выходил на связь. О завершении его миссии было официально объявлено в феврале 2019 г.
Особенности силы тяжести
Марс значительно меньше в отличие от Земли, именно размером обусловлена меньшая сила тяжести на нём. Ньютон использовал закон всемирного тяготения, чтобы описать, как это работает на Земле. Но уже другим учёным удалось объяснить, какая сила тяжести на Марсе.
Эйнштейн, в свою очередь, сообщил, что гравитационная сила представляет собой не что иное, как искривление, создаваемое за счёт массы тела.
Квантовые физики при этом предложили использование теоретической частицы, получившей название «гравитон». Как они считают, именно за счёт неё происходит притяжение, но данный феномен до сих пор остаётся непонятным.
Нюансы магнитного поля
На Марсе, как известно, не имеется магнитосферы. Но есть некоторые остатки магнетизма, значения которых в 500 раз меньше, нежели напряжённость земного «собрата». Основная задача этого слоя заключается в обеспечении защиты от проникновения на поверхность солнечного ветра и радиации из космоса.
Ядро Земли вращается, что приводит к созданию в магме токов. За счёт них происходит генерация особой магнитной напряжённости. На соседней планете данный механизм отсутствует. Поэтому на ней не имеется атмосферы, и наблюдается повышенный уровень радиации.
Тем не менее, учёные, изучающие красную планету, а в частности гравитация на Марсе, отмечают, что есть очевидные признаки существования магнитного поля на планете в прошлом, причём оно справлялось с возложенными на него функциями. И только порядка 3,2 млрд лет тому назад произошло прекращение этого процесса по неизвестным причинам. Возможно притяжение на Марсе как-то на это влияет.
Чем мы будем питаться?
Поверхность Марса не подходит для выращивания растений, поэтому будущим колонизаторам придется прибегнуть к инновационным способам добычи продуктов. Планируется, что первые люди привезут с Земли запас продовольствия на несколько лет вперед. Среди возможных продуктов — водоросли и насекомые, поскольку они быстро размножаются и для их возобновления не нужна почва.
В дальнейшем производство продуктов питание переместится в специально оборудованные помещения с искусственным светом. Питательные вещества для растений будут получать из отходов, либо приводить с Земли. Людей, прилетающих на Марс, обучат работе с тепличным оборудованием Марса, и каждый желающий сможет построить свой персональный огород.
Среди других возможных вариантов — 3D-печать пищевых продуктов. На Марс будет сложно завести животных, и колонизаторы рискуют остаться без мясных продуктов. Потенциальное создание искусственного мяса поможет решить эту проблему и одновременно обеспечить более гуманный способ производства продукта.
Венера
Еще одной самой близкой к нам планетой (кроме Луны) является Венера. Это мир с чудовищными условиями и невероятно плотной атмосферой, заглянуть за которую долгое время никому не удавалось. Ее наличие, кстати, открыл не кто иной как Михаил Ломоносов.
Атмосфера является причиной парникового эффекта и ужасающей средней температуры на поверхности в 467 градусов по Цельсию! На планете постоянно выпадают осадки из серной кислоты и кипят озера жидкого олова. Такая вот негостеприимная планета Венера. Сила тяжести ее составляет 0,904 G от земной, что почти идентично.
Она также является кандидатом на терраформирование, а впервые ее поверхности достигла советская исследовательская станция 17 августа 1970 года.
Терраформирование Марса
Со временем многие или все трудности жизни на Марсе могут быть преодолены путем применения геоинженерии (терраформирования). Используя организмы вроде цианобактерий и фитопланктона, колонисты могли бы постепенно преобразовать большую часть углекислого газа в атмосфере в пригодный для дыхания кислород.
В дополнение к этому предполагается, что значительное количество диоксида углерода (CO2) содержится в форме сухого льда на южном полюсе Марса, а также поглощено реголитом (почвой). Если температура на планете поднимается, этот лед сублимирует в газ и повысит атмосферное давление. Хотя атмосфера после этого не станет более дружелюбной для легких человека, это решит проблему необходимости сдавливающих костюмов.
Возможный способ осуществить это — намеренно создать парниковый эффект на планете. Это можно сделать путем импорта аммиачного льда из атмосфер других планет в нашей Солнечной системе. Поскольку аммиак (NH3) представлен в основном азотом по весу, он также поставить буферный газ, необходимый для пригодной для дыхания атмосферы — как здесь, на Земле.
Точно так же можно было бы вызвать парниковый эффект за счет импорта углеводородов вроде метана — его много в атмосфере Титана и на его поверхности. Метан можно было бы выпустить в атмосферу, где он выступит в качестве компонента парникового эффекта.
Зубрин и Крис Маккей, астробиолог Исследовательского центра Эймса при NASA, также предложили создать заводы на поверхности планеты, которые накачивали бы парниковые газы в атмосферу, тем самым вызвав глобальное потепление (с помощью такого же процессы мы портим атмосферу нашей родной Земли).
Существуют и другие возможности, начиная с орбитальных зеркал, нагревающих поверхность, до намеренной бомбардировки поверхности кометами. Независимо от метода, все существующие варианты по терраформированию Марса могут сделать планету пригодной для человека только в долгосрочной перспективе.
Также это обеспечило бы некоторой защитой от радиации. Данные, полученные Mars Recknnaissance Orbiter, показывают, что такие подземные жилища уже существуют, а значит, их можно использовать.
Первые марсианские программы
Первой страной, решившей отправить свои космические аппараты к Марсу, стал Советский Союз.
Программы СССР
- С 1960 по 1973 год была проведена колоссальная работа по реализации программы по изучению планеты. Однако первые летательные аппараты «Марс 160А» и «Марс 160Б» даже не были выведены на околоземную орбиту из-за аварий ракет-носителей;
- В 1963 году советская автоматическая межпланетная станция (АМС) «Марс-1» подобралась к «красной планете» на расстояние 200 тыс. км, но связь с аппаратом была утеряна;
- Следующая АМС «Марс-2», состоявшая из искусственного спутника и спускаемого аппарата, все-таки добралась до Марса в 1971-м. Спускаемый аппарат разбился, зато спутник проработал около восьми месяцев;
- Самой удачной попыткой был запуск АМС «Марс-3» в декабре 1971 года. Спускаемый аппарат мягко приземлился на планету и проработал 14,5 секунд. Для советской космонавтики это было большим достижением.
Программы США
- Летательный аппарат «Маринер-4» в 1965 году сделал 21 фотографию Марса с расстояния 10 тыс. км;
- «Маринер-7» в 1969 году передал на Землю сотни снимков Марса и собрал с помощью дистанционных датчиков данные об атмосфере планеты;
- «Маринер-9» смог сфотографировать около 85% поверхности Марса, на которых были видны русла рек, горы, вулканы. Также аппарат смог запечатлеть крупным планом естественные спутники планеты — Фобос и Деймос.
- В 1975 году стартовала программа «Викинг». Аппараты смогли в целости и сохранности приземлиться на Марс и проработать более четырех лет. По итогам программы были сделаны цветные фотографии высокого качества с поверхности Марса и собраны данные о почве. Основными элементами, как выяснилось, являются кремний, железо, алюминий и титан. Однако следов жизни обнаружено не было.
Существует несколько биомаркеров, по которым можно определить, есть ли потенциально на планете жизнь или нет. Это кислород, озон, метан, вода и углекислый газ. Если планета похожа на Землю по массе и радиусу и находится в зоне обитаемости, то есть на таком расстоянии от Солнца, что вода может оставаться в жидком виде, а в ее атмосфере присутствуют и взаимодействуют друг с другом пять биомаркеров, то вероятность наличия жизни (в настоящем или в прошлом) очень высока.
Искусственная гравитация
Еще одной проблемой для космонавтов является невесомость. Если принять земную гравитацию за единицу, то, к примеру, сила гравитации Юпитера окажется равной 2,528. В невесомости человек постепенно теряет костную массу, а его мышцы начинают атрофироваться. Поэтому в условиях космического полета астронавтам необходимы длительные тренировки. Пружинистые тренажеры могут помочь в этом, но не в той степени, в которой необходимо. В качестве примера искусственной гравитации можно привести центробежную силу. В летательном аппарате должна присутствовать громадная центрифуга с кольцом вращения. Оснащения кораблей такими аппаратами пока не производилось, хотя подобные планы существуют.
Находясь в космосе 2 месяца, организм космонавтов адаптируется к условиям невесомости, поэтому возвращение на Землю становится для них испытанием: им даже сложно стоять более пяти минут. Представьте себе, какое влияние на человека окажет 8-месячное путешествие на Марс, если костная масса в условиях невесомости уменьшается со скоростью 1% в месяц. Кроме того, на Марсе космонавтам необходимо будет выполнять определенные задачи, привыкая к специфической гравитации. Затем – полет в обратный путь.
Одним из способов создания искусственной гравитации является магнитизм. Но и у него есть свои недостатки, так как к поверхности примагничиваются только ноги, тело же остается вне действия магнита.
В центре Солнечной системы
Космические объекты, принадлежащие к первой группе, расположены внутри орбиты пояса астероидов. Для этих планет характерно следующее строение:
- Центральная область — горячее и тяжелое ядро, состоящее из железа и никеля.
- Мантия, большую часть которой составляют ультраосновные магматические породы.
- Кора, состоящая из силикатов (исключение — Меркурий). В связи с разряженностью атмосферы, его верхний слой сильно разрушен метеоритами).
Некоторые астрономические параметры и сила тяжести на других планетах кратко отражены в таблице.
Радиус орбиты (млн км) | Радиус (тыс. км) | Масса (кг) | Ускорение своб. падения g (м/с2) | Вес космонавта (Н) | |
Меркурий | 57,9 | 2,4 | 3,3×1023 | 3,7 | 260 |
Венера | 108,2 | 6,1 | 4,9×1024 | 8,8 | 622 |
Земля | 149,6 | 6.4 | 6×1024 | 9,81 | 686 |
Марс | 227,9 | 3,4 | 6.4×1023 | 3,86 | 270 |
Оперируя данными таблицы, можно определить, что сила тяжести на поверхности Меркурия и Марса в 2,6 раза меньше, чем на Земле, а на Венере вес космонавта будет меньше земного лишь на 1/10 часть.
Структура и состав Земли и Марса
Представители планет земного типа (Венера, Земля и Марс) похожи по структуре. Это металлическое ядро с мантией и корой, но плотность Земли выше, чем Марса. То есть красная планета состоит из более легких элементов. У Земли есть каменное ядро, покрытое сверху жидким, а также силикатная мантия и твердая поверхностная кора. Что касается Марса, ученые еще не до конца уверены в отношении строения его ядра. Известно, что марсианское ядро состоит из железа и никеля, на 16-17 % — из серы. Мантия Марса составляет всего 1300-1800 км (для сравнения: толщина земной мантии — 2890 км), а кора охватывает 50-125 км (у Земли — 40 км). Мантия и кора Земли и Марса практически одинаковы по структуре, но отличаются по толщине.
Интересные факты
- Людям, побывавшим в космосе и возвратившимся на Землю, достаточно трудно на первых порах привыкнуть к силе гравитационного воздействия нашей планеты. Иногда на это уходит несколько недель.
- Доказано, что человеческое тело в состоянии невесомости может терять до 1% массы костного мозга в месяц.
- Наименьшей силой притяжения в Солнечной системе среди планет обладает Марс, а наибольшей – Юпитер.
- Известные бактерии сальмонеллы, которые являются причиной кишечных заболеваний, в состоянии невесомости ведут себя активнее и способны причинить человеческому организму намного больший вред.
- Среди всех известных астрономических объектов во Вселенной наибольшей силой гравитации обладают черные дыры. Черная дыра размером с мячик для гольфа, может обладать той же гравитационной силой, что и вся наша планета.
- Сила гравитации на Земле одинакова не во всех уголках нашей планеты. К примеру, в области Гудзонова залива в Канаде она ниже, чем в других регионах земного шара.
Во что мы будем одеваться?
Система производства кислорода не избавит людей от необходимости периодически носить скафандры. Даже в случае, если система добычи кислорода окажется удачной, на планете останутся территории, непригодные для дыхания. Плюс к этому на Марсе происходят резкие перепады температур: от -157°С до +121°С. Без специальной одежды человек не сможет выжить в подобных условиях.
Для прогулок по Марсу NASA разработала два скафандра нового поколения, способных работать в автономном режиме до восьми часов. Они помогут защитить космонавтов от непригодных для жизни температур и радиации. Дизайнеры проекта обещают, что новые скафандры не будут сковывать движения: в них будет удобно ходить и даже прыгать. Изначально костюмы создавались для высадки человека на Луну, при добавлении небольшого количества модификаций они подойдут и для будущих жителей Марса.
Презентация марсианских скафандров NASA