Что находится в центре млечного пути и других галактик?
Содержание:
- Транс-нептуновая область Солнечной системы
- Понятие темной материи
- Планеты, похожие на Землю
- Размеры обозримой Вселенной
- Обнаружение Солнечной системы
- Другие объекты
- Апоп
- Что ждет Млечный Путь?
- Что представляет собой Галактика
- Структура Млечного Пути
- Интересные факты
- Квадранты
- Млечный Путь
- Звезды Млечного Пути
- Рождение галактик
- Таблица характеристик основных видов галактик
Транс-нептуновая область Солнечной системы
В поясе Койпера уже нашли тысячи объектов, но полагают, что там проживают до 100000 с диаметром более 100 км. Они крайне малы и расположены на больших дистанциях, поэтому состав вычислить сложно.
Спектрографы показывают ледяную смесь: углеводороды, водяной лед и аммиак. Изначальный анализ показал широкий цветовой диапазон: от нейтрального к ярко красному. Это намекает на богатство состава. Сравнение Плутона и KBO 1993 SC показало, что по поверхностным элементам они крайне отличаются.
Водный лед сумели найти в 1996 TO66, 38628 Huya и 20000 Varuna, а кристаллический заметили в Кваваре.
Понятие темной материи
Термин «темная материя» довольно часто встречается в современной астрономии, космологии и физике. Но четкого определения этому понятию нет, так как до сих пор увидеть исследователям ее так и не удалось. Это одно из самых загадочных явлений современной науки. Наблюдать темную материю не предоставляется возможности. О ее существовании ученые судят по тому, как ее гравитационное поле воздействует на звездные орбиты в галактиках.
Невидимое галактическое вещество было обнаружено в 1922 году. О его существовании впервые заявили физик из Британии Джеймс Джинс и астроном из Голландии Якобус Каптейн. Благодаря предположению о притягивании друг к другу предметов и частей во Вселенной, исследователи нашли массу видимого космоса. Но вскоре ученые поняли, что существует несоответствие между весом реальным и предполагаемым. Ими было установлено существование невидимой массы, которая занимает 95.1% всей массы Вселенной. Из них на массу темной материи приходится 26.8%, на темную энергию — 68.3%. Глубокое изучение эти двух понятий в дальнейшем сможет определить будущее нашей Вселенной.
Выяснить, из чего состоит темная материя, ученым довольно сложно, так как она напоминает предмет, который есть, и в тоже время отсутствует. Да и название имеет условное, потому что цвета эта субстанция не имеет. Но все же темная материя обладает определенными характеристиками:
- подвергается гравитационному воздействию;
- воздействует на другие объекты в космическом пространстве;
- имеет слабое взаимодействие с реальным миром;
- не посылает электромагнитные волны.
Некоторые ученые считают, что она может влиять на траекторию распространения света. Плотные объекты могут отражать свет объектов более дальних, что приводит к изменению его пути. Происходит искажение изображения галактик и звезд. Как результат – появление космических миражей. Это явление получило название — гравитационное линзирование. Именно благодаря ему была сформирована карта, которая показывает, как невидимая материя распределяется в трехмерном пространстве.
Существование темной материи нашло свое некое подтверждение в скоплениях галактик Пуля. Это же подтверждается и благодаря наблюдениям за столкновением других скоплений галактик.
Космос и Вселенная таят в себе много загадок, которые только предстоит разгадать человечеству в ближайшем или далеком будущем. Что касается Галактики Млечный путь, то стоит отметить, что свою жизнь она начала в результате скопления плотных областей после Большого взрыва. Первые образовавшиеся звезды находились в шаровых скоплениях, которые, кстати, существуют и сегодня. Они считаются древнейшими звездами Галактики. Формирование Млечного пути еще не закончилось, он продолжает увеличиваться в размерах благодаря поглощению более мелких галактик. А через 5 млрд. лет ожидается его столкновение с Андромедой.
Планеты, похожие на Землю
Если в нашей галактике имеется более 100 миллиардов планет, сколько же из них планет, похожих на Землю? Оказывается, не так уж и много. Существуют десятки различных типов планет: газовые гиганты, планеты-пульсары, бурые карлики и планеты, на которых с неба падает дождь из расплавленного металла. Те планеты, которые состоят из каменных пород, могут располагаться слишком далеко или слишком близко к звезде, поэтому на Землю они вряд ли похожи.
Результаты последних исследований показали, что в нашей галактике, оказывается, больше планет земного типа, чем предполагалось раннее, а именно: от 11 до 40 миллиардов. Ученые взяли в качестве примера 42 тысячи звезд, похожих на наше Солнце, и стали искать экзопланеты, которые могут вращаться вокруг них в зоне, где не слишком жарко и не слишком холодно. Было обнаружено 603 экзопланеты, средикоторых 10 соответствовали критериям поиска.
Анализируя данные о звездах, ученые доказали существование миллиардов похожих на Землю планет, которые им только предстоит официально открыть. Теоретически эти планеты способны поддерживать температуру для существования на них жидкой воды, которая, в свою очередь, позволит возникнуть жизни.
Размеры обозримой Вселенной
Обозримая Вселенная или Метагалактика – это все космическое пространство, каждая галактика и планета, которую мы можем увидеть. Мы не можем видеть дальше, чем на 13,8 млрд световых лет, потому что всему нашему мирозданию и есть столько лет. Свет от его более далеких областей до нас еще попросту не дошел. Поэтому нельзя точно сказать, что находится за пределами Вселенной, по крайней мере видимой. Согласно теории расширения пространства, все космические объекты удаляются друг от друга на сверхсветовой скорости. Но даже при этом мы все еще наблюдаем свет от некоторых из них, даже если на самом деле они уже могли значительно удалиться от нашей галактики.
Границей Метагалактики принято считать космологический горизонт. Это не значит, что за ним лишь пустота. Скорее всего, там находятся такие же звезды и планеты, но увидеть их мы не можем. Понять истинные размеры обозримой Вселенной сложно еще и потому, что объекты отдаляются друг от друга.
Размеры обозримой Вселенной
Если взять Солнечную систему в качестве центра видимой Вселенной, то в диаметре все это пространство будет составлять примерно 93 миллиарда световых лет. Так как Метагалактика в основном однородна, многие предположения говорят о том, что за ее пределами находится все то же самое. А значит ее граница не является концом всего, и, возможно, все это тоже лишь песчинка в масштабах чего-то невообразимого большего.
Обнаружение Солнечной системы
Фактические нужно посмотреть в небо, и вы увидите нашу систему. Но немногие народы и культуры понимали, где именно мы существуем и какое место занимаем в пространстве. Долгое время мы думали, что наша планета статична, расположена в центре, а остальные объекты выполняют обороты вокруг нее.
Но все же еще в древние времена появлялись сторонники гелиоцентризма, чьи идеи вдохновят Николая Коперника на создание истинной модели, где в центре располагалось Солнце.
Галилей часто использовал свой телескоп, чтобы показать людям небесные объекты
В 17-м веке Галилей, Кеплер и Ньютон сумели доказать, что планета Земля вращается вокруг звезды Солнце. Обнаружение гравитации помогло понять, что и другие планеты следуют по единым законам физики.
Революционный момент настал с появлением первого телескопа от Галилео Галилея. В 1610-м году он заметил Юпитер и его спутники. За этим последуют обнаружения остальных планет.
В 19-м веке провели три важных наблюдения, которые помогли вычислить истинную природу системы и ее позицию в пространстве. В 1839 году Фридрих Бессель удачно определил кажущийся сдвиг в звездной позиции. Это показало, что между Солнцем и звездами лежит огромная дистанция.
В 1859 году Г. Кирхгоф и Р. Бунсен использовали телескоп для проведения спектрального анализа Солнца. Оказалось, что оно состоит из тех же элементов, что и Земля. Эффект параллакса просматривается на нижнем рисунке.
Параллакс помогает наблюдать за объектом на противоположных концах земной орбиты, чтобы вычислить точную удаленность
В итоге, Анджело Секки сумел сопоставить спектральную подпись Солнца со спектрами других звезд. Выяснилось, что они практически сходятся. Персиваль Лоуэлл внимательно изучал отдаленные уголки и орбитальные пути планет. Он догадался, что есть еще нераскрытый объект – Планета Х. В 1930-м году в его обсерватории Клайд Томбо замечает Плутон.
В 1992 году ученые расширяют границы системы, обнаружив транс-нептунианский объект – 1992 QB1. С этого момента начинается заинтересованность поясом Койпера. Далее следуют нахождения Эриды и прочих объектов от команды Майкла Брауна. Все это приведет к собранию МАС и смещению Плутона со статуса планеты. Ниже вы сможете детально изучить состав Солнечной системы, рассмотрев все солнечные планеты по порядку, главную звезду Солнце, пояс астероидов между Марсом и Юпитером, пояс Койпера и Облако Оорта. В Солнечной системе также скрывается самая большая планета (Юпитер) и самая маленькая (Меркурий).
Другие объекты
В состав Солнечной системы также входят:
- Карликовые планеты. Они уступают по размерам стандартным. Популярный представитель – Плутон.
- Пояс Койпера. Объект располагается за границами орбиты Нептуна. Представляет скопление ледяных тел в форме диска. Здесь обнаружены сотни карликовых образований типа Плутона.
- Облако Оорта. Формирование, наполненное ледяными конгломератами. Оно располагается на расстоянии 100000-200000 а.е. от звезды.
- Кометы. Космические тела из газа, льда и космической пыли. Приближаясь к Солнцу, они нагреваются и выбрасывают видимый след в виде знаменитого «хвоста».
- Астероиды. Каменные образования двигаются вокруг солнечного диска между Марсом и Юпитером. Траектории движения малых тел постоянно изменяются за счет гравитационного влияния соседних объектов.
- Метеоры и метеориты. Космические объекты малых размеров, периодически врывающиеся в атмосферный слой Земли, до момента падения называются метеоритами. В момент попадания в земную атмосферу их переквалифицируют в метеоры. Они сгорают в воздухе до падения, небольшая часть падает на поверхность.
Апоп
Какие формы только не встречабтся во Вселенной.
В 2018 году астрономы заявили о наличии в нашей галактике уникальной системы. Она расположена в созвездии Наугольника и представляет собой тройную звездную систему, состоящую из двух звезд Вольфа-Райе и сверхгиганта. Научное название — 2XMM J160050.7–514245. Для просты ее прозвали Апоп. Название происходит из имени божества из египетской мифологии — огромного змея, олицетворяющего зло и Хаос, извечного врага бога солнца Ра. Уникальной ее делает то, что согласно нашим теориям должно произойти после ее звездного коллапса.
Когда звезды класса Вольфа-Райе погибают, они превращаются в сверхновые и создают очень мощные гамма-выбросы. Последнее является наиболее мощным явлением излучения энергетически заряженных частиц в известной нам Вселенной и никогда ранее не наблюдалось внутри Млечного Пути. Такие всплески происходят очень редко, но Апоп подает весомые надежды.
Визуально Апоп определяется как две звезды, но нижняя более крупная звезда на самом деле является двойной звездой Вольфа — Райе, состоящей из двух звезд, расположенных очень близко друг к другу. Третья звезда вращается вокруг двойной звезды на расстоянии около 1700 астрономических единиц (250 млрд. км) с периодом обращения, превышающим 10 тысяч лет. Система окружена облаками из звездного ветра и космической пыли. Скорость ветра здесь достигает 12 000 000 км/ч, а скорость вращения космической пыли составляет 2 000 000 км/ч.
Звезды Вольфа — Райе с быстрым вращением теоретически могут породить гамма-всплеск в ходе взрыва сверхновой. Звездная система 2XMM J160050.7–514245 подходит под это описание и может породить выброс двух гамма-джетов из своих полюсов. Потенциальный гамма-всплеск из данной системы не опасен для жизни на Земле, поскольку угол отклонения оси вращения звездной системы по отношению к Земле составляет примерно 30 градусов. Но зрелище будет незабываемым.
Что ждет Млечный Путь?
Полагают, что Млечный Путь появился из-за слияния меньших галактик. Этот процесс продолжается, так как к нам уже мчится галактика Андромеды, чтобы через 3-4 миллиарда лет создать гигантский эллипс.
Составное изображение галактик в Сверхскоплении Девы
Млечный Путь и Андромеда не существуют в изоляции, а входят в Местную группу, которая также является частью Сверхскопления Девы. На этой гигантской области (110 миллионов световых лет) располагается 100 групп и галактических скоплений.
Если вам так и не удалось полюбоваться родной галактикой, то сделайте это как можно скорее. Найдите тихое и темное место с открытым небом и просто насладитесь этой удивительной звездной коллекцией. Напомним, что на сайте есть виртуальная 3D-модель галактики Млечный Путь, позволяющая изучить все звезды, скопления, туманности и известные планеты в режиме онлайн. А наша карта звездного неба поможет отыскать все эти небесные тела на небе самостоятельно, если решили купить телескоп.
- Интересные факты о Млечном Пути;
- Почему наша галактика называется Млечный Путь;
- Кто открыл Млечный Путь?;
- Сколько проживет Млечный Путь?;
- Насколько стар Млечный Путь?;
- Млечный Путь с Земли;
- Сколько обитаемых планет в Млечном Пути?;
Положение и движение Млечного Пути
- Ближайшая галактика к Млечному Пути;
- Млечный Путь и Андромеда;
- Как сформировался Млечный Путь?;
- Как выглядит Млечный Путь?;
- Вращение Млечного Пути;
- Столкновение Млечного Пути;
- Насколько большой Млечный Путь?;
- Размеры Млечного Пути;
- Диаметр Млечного Пути;
- Масса Млечного Пути;
- Карта Млечного Пути;
- Где расположена Земля в Млечном Пути?;
Состав Млечного Пути
- Центр Млечного Пути;
- Выпуклость Млечного Пути;
- Черная дыра Млечного Пути;
- Сколько звезд в Млечном Пути;
- Сколько планет в Млечном Пути;
Что представляет собой Галактика
Млечный путь по форме напоминает спираль с перемычкой. Все звёзды, находящиеся в его пространстве, вращаются вокруг ядра, как и Солнце. Полный оборот звезда совершит за 200 миллионов лет. Нашими соседями в космическом пространстве являются Туманность Андромеды, и Галактика Треугольника — астрономы объединяют их в группу, которая имеет название сверхскопление Девы. Кроме больших галактик, в группу ходит множество карликовых. Их гравитационные поля слабее, поэтому они притягиваются к более крупным соседям.
Млечный путь (компьютерная модель). Спиральная галактика с перемычкой. Доминируют два из четырёх рукавов.
Интересно знать! Единицей измерения расстояния между объектами в космосе является световой год. Он равен тому расстоянию, которое луч света преодолевает за 365 дней. Учёные считают, что Вселенная, окружающая нашу планету, распространяется на 93 млрд световых лет от Земли.
Солнце — центр планетной системы, вокруг которой вращается 8 небесных тел. Это происходит потому, что масса звезды очень велика и создает сильное гравитационное притяжение. Солнечная система состоит не только из планет, но других космических объектов, вращающихся вокруг ее центра. За долгие годы наблюдений наша звездная система изучена относительно неплохо. Однако другие скопление планет находятся на расстояниях, преодолеть которые невозможно. И все они относятся к Млечному пути.
Структура Млечного Пути
Если внимательно рассмотреть структуру Млечного Пути, то мы увидим следующее:
- Галактический диск. Здесь сосредоточено большинство звезд Млечного Пути.
Сам диск разбит на следующие части:
- Ядро это центр диска;
- Дуги – области вокруг ядра, в том числе непосредственно области выше и ниже плоскости диска.
- Спиральные рукава – это области, которые выступают наружу от центра. Наша Солнечная Система находится в одном из спиральных рукавов Млечного Пути.
- Шаровые скопления. Несколько сотен из них разбросаны выше и ниже плоскости диска.
- Гало. Это большая, тусклая область, которая окружает всю галактику. Гало состоит из газа большой температуры и, возможно, темной материи.
Радиус гало значительно больше размеров диска и по некоторым данным достигает нескольких сот тысяч световых лет. Центр симметрии гало Млечного Пути совпадает с центром галактического диска. Состоит гало в основном из очень старых, неярких звезд. Возраст сферической составляющей Галактики превышает 12 млрд лет. Центральная, наиболее плотная часть гало в пределах нескольких тысяч световых лет от центра Галактики называется балдж (в переводе с английского «утолщение»). Вращается гало в целом очень медленно.
По сравнению с гало диск вращается заметно быстрее. Он представляет собой как бы две сложенные краями тарелки. Диаметр диска Галактики около 30 кпк (100 000 световых лет). Толщина – около 1000 световых лет. Скорость вращения не одинакова на различных расстояниях от центра. Она быстро возрастает от нуля в центре до 200-240 км/с на расстоянии 2 тыс. световых лет от него. Масса диска в 150 млрд раз больше массы Солнца (1,99*1030 кг). В диске концентрируются молодые звезды и звездные скопления. Среди них много ярких и горячих звезд. Газ в диске Галактики распределен неравномерно, образуя гигантские облака. Основным химическим элементом в нашей Галактике является водород. Примерно на 1/4 она состоит из гелия.
Одной из самых интересных областей Галактики считается ее центр, или ядро, расположенное в направлении созвездия Стрельца. Видимое излучение центральных областей Галактики полностью скрыто от нас мощными слоями поглощающей материи. Поэтому ее начали изучать только после создания приемников инфракрасного и радиоизлучения, которое поглощается в меньшей степени. Для центральных областей Галактики характерна сильная концентрация звезд: в каждом кубическом парсеке их многие тысячи. Ближе к центру отмечаются области ионизированного водорода и многочисленные источники инфракрасного излучения, свидетельствующие о происходящем там звездообразовании. В самом центре Галактики предполагается существование массивного компактного объекта – черной дыры массой около миллиона масс Солнца.
Одним из наиболее заметных образований являются спиральные ветви (или рукава). Они и дали название этому типу объектов – спиральные галактики. Вдоль рукавов в основном сосредоточены самые молодые звезды, многие рассеянные звездные скопления, а также цепочки плотных облаков межзвездного газа, в которых продолжают образовываться звезды. В отличие от гало, где какие-либо проявления звездной активности чрезвычайно редки, в ветвях продолжается бурная жизнь, связанная с непрерывным переходом вещества из межзвездного пространства в звезды и обратно. Спиральные рукава Млечного Пути в значительной мере скрыты от нас поглощающей материей. Подробное их исследование началось после появления радиотелескопов. Они позволили изучать структуру Галактики по наблюдениям радиоизлучения атомов межзвездного водорода, концентрирующегося вдоль длинных спиралей. По современным представлениям, спиральные рукава связаны с волнами сжатия, распространяющимися по диску галактики. Проходя через области сжатия, вещество диска уплотняется, а образование звезд из газа становится более интенсивным. Причины возникновения в дисках спиральных галактик такой своеобразной волновой структуры не вполне ясны. Над этой проблемой работают многие астрофизики.
Интересные факты
Кроме Обитаемой зоны, в Млечном Пути имеется и Необитаемая. В ней изначально не было процессов, сделавших появление жизни на планетах возможным. Крупных звезд, остатки которых после взрывов стали «кирпичиками» для рождения углерода, кислорода, железа, кальция и других элементов, там взорвалось гораздо меньше. Потому содержание нужных для создания и поддержания жизни веществ здесь минимально.
Потенциально не подходят для жизни из-за смертельного излучения еще одни жители Млечного Пути — звезды О-типа. Это горячие гиганты, излучающие громадные дозы ультрафиолетовых волн, убивающие в радиусе нескольких десятков световых лет от себя не только все живое, но и планеты до того, как их формирование закончится. Излучаемая О-звездами энергия не только «сдирает материю» с небесных тел, но и вырывает их с орбит.
У нашей галактики немало интересных, а иногда и странных соседей:
Глизе-581 — красный карлик, расположенный в 20,4 световых годах от Земли. Credit: NASA.
- Глизе-710, звезда — оранжевый карлик, более массивная, чем Солнце (на 60%), находящаяся от Земли на расстоянии всего 60-65 световых лет и постоянно приближающаяся.
- Облако Оорта — так называют обволакивающую нас по периметру громадную зону, полную ледяных глыб и валунов, являющуюся источником попадающих в Солнечную систему комет, астероидов и других мелких небесных тел.
- Альфа Центавра — ближайшая к Земле звезда. Она находится на расстоянии всего 4 световых года и состоит из 3 вращающихся друг вокруг друга небесных тел.
- Коричневые карлики — холодные и темные, излучающие мало света и потому сложные для наблюдения. Ближайшие из них находятся на расстоянии 9-40 световых лет, и некоторые такие прохладные, что до них даже можно дотронуться рукой.
- Экзопланеты, заметить которые сложно — ведь они не излучают света. Ближайшая из них находится в 10 световых годах отсюда и вращается вокруг одной из звезд созвездия Эридана. По свойствам эта планета напоминает Юпитер — является газовым гигантом.
Экзопланеты, находящиеся в непосредственной близости от Солнечной системы, называются трансплутоновыми, а после 2006 г., когда Плутон официально перестал считаться планетой, транснептуновыми. Во второй половине активно шли поиски Планеты Икс.
Ученые предсказывали, что этот объект похож габаритами на Юпитер и имеет ретроградную (обратно направленную) орбиту. Из экзопланет за пределами нашей системой в обратном направлении движется Wasp-17b. Она открыта в 2009 г. и находится совсем близко — на расстоянии около 1000 световых лет.
А еще в Млечном Пути встречаются «бездомные» планеты, открытые в начале 2010-х гг. Они начали существование как другие подобные небесные тела, но по какой-то причине сместились с орбиты и больше не вращаются вокруг звезды-родителя, хаотично блуждая по галактике.
https://youtube.com/watch?v=bJO_axU1Ev8
Квадранты
В звёздной картографии под квадрантом подразумевается обширное пространство космоса в рамках галактики. Границы квадрантов определяются осями, проходящими через центр галактики и пересекающимися перпендикулярно друг относительно друга. Таким образом, галактика Млечный путь состоит из четырёх приблизительно равных квадрантов, которые называются Альфа, Бета, Гамма и Дельта-квадрантами. Звёздный Флот Федерации и его ближайшие соседи Клингонская и Ромуланская империи располагаются в Альфа и Бета-квадрантах. Коллектив боргов находится в Дельта-квадранте. Доминион — в Гамма-квадранте.
Альфа-квадрант
Альфа-квадрант — это собирательное название одной четвёртой галактики Млечный Путь. Его границы определены меридианом, проходящим через галактическое ядро вблизи Солнечной системы и вторым меридианом, перпендикулярным первому. В квадрант входят Рукав Ориона, Рукав Персея и Рукав Стрельца.
Межзвёздная политика в Альфа-квадранте в XXIV веке в основном определялась Звёздном Флоте Федерации совместно с другими силами региона, включавшими Клингонскую и Ромуланскую империи, Кардассианский союз, Тзенкети, Таларианскую республику и Альянс ференгов, которые взаимодействовали между собой в основном мирно. Члены Толианского сообщества , Конфедерации бринов и Зинди держались достаточно обособленно от остальных обитателей Альфа-квадранта.
Стоит отметить, что к этому времени достаточно изучено только 25 процентов Альфа-квадранта, но и они содержат примеры потрясающей красоты и научного чуда, как, например, Звёздное скопление Арголис, Туманность Арахнид и Пустоши.
Одним из самых интересных астрономических объектов является Баджорская червоточина, соединяющая Баджорский сектор в Альфа-квадранте с системой Идран, расположенной в отдалённой части Гамма-квадранта, неподалёку от пространства Доминиона. Использование этой червоточины обитателями Альфа-квадранта для исследований и торговли вызвало усиление враждебности со стороны Доминиона, что вылилось в Доминионскую войну.
Бета-квадрант
Бета-квадрант — это собирательное название одной четвёртой галактики Млечный Путь. Один из квадрантов нашей Галактики, расположенный в направлении созвездия Киля перпендикулярно α Квадранту. В Бета-Квадранте располагаются владения Клингонской звёздной империи, а также Ромуланской звёздной империи, некоторая часть Квадранта принадлежит и Федерации. Федерации плохо известна картография Бета-Квадранта — в основном по причине перекрывания дальнейшего доступа к остальной части Квадранта Клингонской и Ромуланской империями: известно, что в 2566 году клингоны присоединились к Федерации — вероятно, тогда началось более активное освоение Квадранта, потому как барьеров больше не стало. В 2293 году крейсер типа «Эксельсиор» под командованием капитана Салу закончил трёхлетний исследовательский рейс в Бета-Квадранте, который включал каталогизирование газообразных аномалий Квадранта. 70 лет спустя «Олимп» под командованием Лайзы Кузак семь лет исследовал Бета-Квадрант. С большой долей вероятности можно предположить, что большинство миссий NX-01 имели место в Бета-Квадранте и лишь часть — в α Квадранте.
Гамма-квадрант
Гамма-квадрант — это собирательное название одной четвёртой галактики Млечный Путь. Его границы определённы меридианом, проходящим через галактическое ядро вблизи Солнечной системы и вторым меридианом, перпендикулярным первому. Ближайшая к Земле граница Гамма-квадранта расположена примерно в 30 000 световых годах от неё. Стабильная Баджорская червоточина соединяет Баджорский сектор в Альфа-квадранте с системой Идран, расположенной в Гамма-квадранте.
Дельта-квадрант
Дельта-квадрант — это собирательное название одной четвёртой галактики Млечный Путь. Его границы определены меридианом, проходящим через галактическое ядро вблизи Солнечной системы, и вторым меридианом, перпендикулярным первому. Ближайшая точка до Земли расположена примерно в 30 000 световых годах от Земли. В квадрант входит часть Рукава Центавра, а также шаровые звёздные скопления M14 (NGC 6402) и M80 (NGC 6093).
Впервые люди были заселены в Дельта-квадрант расой под названием бриори примерно в 1937 году для использования в качестве рабов. Но рабы восстали, а их потомки основали новую цивилизацию на планете L-класса. Впервые люди самостоятельно посетили этот сектор космоса в звёздную дату 32629.4, когда звездолёту «Рэйвен» удалось проследовать за кораблём боргов через трансварповый канал. Первая миссия Звёздного флота в Дельта-квадранте совпала с инспекцией Барзанской червоточины в 2366 году.
Млечный Путь
Наша родная галактика – Млечный Путь – представляет собой спираль в форме диска с перемычкой. Ядро галактики составляют старые звезды – красные гиганты. Местную группу Млечный Путь разделяет с двумя соседними галактиками: туманностью Андромеды и галактикой Треугольника. Сверхскопление, к которому они принадлежат, называется Сверхскоплением Девы.
В местной группе Млечного Пути, кроме трех больших галактик, находится около 40 карликовых галактик-спутников, которые притягиваются более сильными гравитационными полями своих больших соседей. Черных дыр и пространств темной материи в сверхскоплении Девы может быть столько же, сколько галактик. В Млечном Пути абсолютно точное количество звезд неизвестно, но по самым приблизительным подсчетам их 200 миллиардов. Диаметр млечного пути составляет сто тысяч световых лет, а средняя толщина диска – тысяча световых лет.
Самые молодые звезды и их скопления находятся ближе к поверхности диска, в то время как центром ядра галактики, по предположениям ученых, является огромная черная дыра, вокруг которой очень высокая концентрация звезд. Главная звезда нашей системы – Солнце – расположена ближе к поверхности диска.
Звезды Млечного Пути
Космическая обсерватория Gaia была запущена на земную орбиту в конце 2013 года. Находясь в полутора миллионах километров от Земли, телескоп приступил к наблюдениям за звездами нашей галактики в июле 2014 года. С тех самых пор он непрерывно сканирует небо, медленно вращаясь вокруг себя и всматриваясь в глубины космического океана. Согласно работе, опубликованной в журнале Nature, этот космический телескоп позволяет ученым отслеживать практически незаметные движения звезд по Млечному Пути. Как пишет Scientific American стоимость этого уникального телескопа составляет один миллиард долларов.
Недавно специалисты Европейского космического агентства опубликовали новые данные наблюдений под названием Gaia Early Data Release 3 (EDR3), в которых содержалась обновленная информация о миллиарде звезд, включая более точные расчеты их местоположения и скоростей. Именно эти данные необходимы астрономам для составления самой подробной карты нашей галактики и лучшего понимания ее эволюции. Сбор данных в общей сложности занял у исследователей 34 месяца.
Начиная с 2014 года космический телескоп Gaia изучает положение звезд Млечного Пути.
Внимательно изучив предыдущие наборы данных за 2016 и 2018 годы, исследователи обнаружили, что в настоящее время они цитируются в литературе со скоростью 3000 раз в год. Один веб-сайт уже каталогизировал 4324 рецензируемых статьи, основанных на данных полученных Gaia, что говорит об их широком применении в астрономии.
Примечательно, что новый набор данных EDR3 космический телескоп собирал на протяжении трех лет, что позволило астрономам расширить каталог звезд на 15% – до 1,8 миллиарда, а измерения Gaia в целом стали точнее. Так, по сравнению с 2018 годом расчеты измерения расстояний стали точнее на 50%, а измерения скорости звезд – на 100%.
Чтобы добиться таких ошеломительных результатов, ученым пришлось преодолеть неожиданную проблему: когда Gaia вращается, солнечный свет падает на телескоп под разными углами, что слегка деформирует его форму. Эта деформация повлияла на измерения положения звезд больше, чем ожидалось. Сегодня исследователи частично научились корректировать этот неприятный эффект, а в будущем рассчитывают на его полное устранение.
Рождение галактик
Галактики появились на свет вскоре после звезд. Считается, что первые светила вспыхнули никак не позднее, чем спустя 150 млн лет после Большого взрыва. В январе 2011 года команда астрономов, обрабатывавших информацию с космического телескопа «Хаббл», сообщила о вероятном наблюдении галактики, чей свет ушел в космос через 480 млн лет после Большого взрыва. В апреле еще одна исследовательская группа обнаружила галактику, которая, по всей вероятности, уже вполне сформировалась, когда юной Вселенной было около 200 млн лет.
Условия для рождения звезд и галактик возникли задолго до его начала. Когда Вселенная прошла возрастную отметку в 400 000 лет, плазма в космическом пространстве заменилась смесью из нейтрального гелия и водорода. Этот газ был еще чересчур горяч, чтобы стянуться в молекулярные облака, дающие начало звездам. Однако он соседствовал с частицами темной материи, изначально распределенными в пространстве не вполне равномерно — где чуть плотнее, где разреженнее. Они не взаимодействовали с барионным газом и потому под действием взаимного притяжения свободно стягивались в зоны повышенной плотности. Согласно модельным вычислениям, уже через сотню миллионов лет после Большого взрыва в космосе образовались облака темной материи величиной с нынешнюю Солнечную систему. Они объединялись в более крупные структуры, невзирая на расширение пространства. Так возникли скопления облаков темной материи, а потом и скопления этих скоплений. Они втягивали в себя космический газ, предоставляя ему возможность сгущаться и коллапсировать. Таким путем появились первые сверхмассивные звезды, которые быстро взрывались сверхновыми и оставляли после себя черные дыры. Эти взрывы обогащали космическое пространство элементами тяжелее гелия, которые способствовали охлаждению коллапсирующих газовых облаков и потому делали возможным появление менее массивных звезд второго поколения. Такие звезды уже могли существовать миллиарды лет и потому были в состоянии формировать (опять-таки с помощью темной материи) гравитационно связанные системы. Так возникли долгоживущие галактики, в том числе и наша.
«Многие детали галактогенеза еще скрыты в тумане, — говорит Джон Корменди. — В частности, это относится к роли черных дыр. Их массы варьируют от десятков тысяч масс Солнца до абсолютного на сегодняшний день рекорда в 6,6 млрд солнечных масс, принадлежащего черной дыре из ядра эллиптической галактики М87, расположенной в 53,5 млн световых лет от Солнца. Дыры в центрах эллиптических галактик, как правило, окружены балджами, составленными из старых звезд. Спиральные галактики могут вовсе не иметь балджей или же обладать их плоскими подобиями, псевдобалджами. Масса черной дыры обычно на три порядка меньше массы балджа — естественно, если оный наличествует. Эта закономерность подтверждается наблюдениями, охватывающими дыры массой от миллиона до миллиарда солнечных масс».
Как полагает профессор Корменди, галактические черные дыры набирают массу двумя путями. Дыра, окруженная полноценным балджем, растет за счет поглощения газа, который приходит к балджу из внешней зоны галактики. Во время слияния галактик интенсивность поступления этого газа резко возрастает, что инициирует вспышки квазаров. В результате балджи и дыры эволюционируют параллельно, что и объясняет корреляцию между их массами (правда, могут работать и другие, еще неизвестные механизмы).
Исследователи из Питтсбургского университета, Калифорнийского университета в Ирвине и Атлантического университета Флориды смоделировали ситуацию столкновения Млечного пути и предшественницы карликовой эллиптической галактики в Стрельце (Sagittarius Dwarf Elliptical Galaxy, SagDEG). Они проанализировали два варианта столкновений – с легкой (3х10^10 масс Солнца) и тяжелой (10^11 масс Солнца) SagDEG. На рисунке показаны результаты 2,7 млрд лет эволюции Млечного пути без взаимодействия с карликовой галактикой и с взаимодействием с легким и тяжелым вариантом SagDEG.
Иное дело безбалджевые галактики и галактики с псевдобалджами. Массы их дыр обычно не превышают 104−106 солнечных масс. По мнению профессора Корменди, они подкармливаются газом за счет случайных процессов, которые происходят недалеко от дыры, а не простираются на целую галактику. Такая дыра растет вне зависимости от эволюции галактики или ее псевдобалджа, чем и обусловлено отсутствие корреляции между их массами.
Таблица характеристик основных видов галактик
Эллиптическая галактика | Спиральная галактика | Неправильная галактика | |
---|---|---|---|
Сфероидальный компонент | Галактика целиком | Есть | Очень слаб |
Звёздный диск | Нет или слабо выражен | Основной компонент | Основной компонент |
Газопылевой диск | Нет | Есть | Есть |
Спиральные ветви | Нет или только вблизи ядра | Есть | Нет |
Активные ядра | Встречаются | Встречаются | Нет |
Процент от общего числа галактик | 20% | 55% | 5% |
Спиральные бывают с перемычкой и без. В первом типе центр пересекается плотным баром звезд. А у вторых подобного формирования не наблюдается.
В эллиптических галактиках проживают самые древние звезды и нет достаточного количества пыли и газа, чтобы создать молодые. Могут напоминать по форме круг, овал или же спиральный тип, но без рукавов.
Примерно четверть галактик представляют группу неправильных. Они меньше, чем спиральные и отображают порой причудливые формы. Их можно объяснить появлением новых звезд или же гравитационным контактом с соседней галактикой. Среди неправильных числятся Магеллановы Облака.