Невозможные космические объекты, но они существуют в реальности

Содержание:

Избавиться от храпа

В космосе невозможно храпеть ночью

Живя в космосе, вы перестанете храпеть по ночам (если, конечно, до этого храпели на Земле). Благодаря пониженному воздействию гравитации на вашу дыхательную систему происходит значительное сокращение различных проблем, связанных с расстройством сна. Вследствие этого вы станете как минимум на 20 процентов меньше раздражать ваших соседей.

Несмотря на то, что некоторый процент гравитации все же будет воздействовать на ваш язычок и мягкое нёбо, эффект, приводящий к непроизвольной вибрации этих мягких тканей, будет существенно снижен, и вы перестанете храпеть.

Луна — спутник Земли

Луна вращается вокруг Земли и никуда не может улететь, потому что Земля ее притягивает. А еще она все время повернута к нам одной и той же стороной. Луна гораздо меньше нашей планеты, она как яблоко рядом с арбузом или как средняя собака рядом с человеком. А расстояние от Земли до Луны — в тридцать раз больше размера самой Земли. Если бы мы могли поехать к нашему спутнику на машине, дорога заняла бы полгода.

Сама Луна не может светить, она холодная и вся покрыта толстым слоем космической пыли. Но она отражает свет Солнца — потому-то мы и видим, как она светится на небе. Если взять мячик и назвать его Луной, потом взять фонарик и назначить его Солнцем, то можно в этом разобраться. Когда мы светим фонариком на мячик, то с одной стороны он кажется круглым и ярким, как Луна в полнолуние. Но с другой стороны он темный и не освещенный, как Луна в безлунные ночи. А если посмотреть на мячик сбоку, то мы увидим освещенную часть поверхности — как «месяц» Луны в растущей или стареющей фазе.

Что посмотреть и почитать: фильмы «В тени Луны», «Зачем нам Луна?». Книга Е.Качур «Увлекательная астрономия. Детские энциклопедии с Чевостиком».

Лунный прыжок и сила тяжести

На Луне мы можем подпрыгнуть гораздо выше и дальше, чем на Земле. Можно измерить свой «земной прыжок»: выйти во двор, прыгнуть, отметить мелом начало и конец прыжка, измерить длину рулеткой. Так вот, если добавить к своему прыжку еще пять таких же — получится «лунный прыжок». Вот как мы бы прыгали на Луне! А все потому, что там меньше сила тяжести. Чем меньше вес планеты или другого небесного тела, тем меньше она притягивает к себе человека и все, что находится на ее поверхности. Правда на Луне придется надеть скафандр, и в нем прыгать будет не так удобно.

«Марсианский прыжок» больше земного в 2,5 раза, а на Юпитере — наоборот, меньше в 2,5 раза. На Юпитере или Сатурне нам было бы сложно даже просто ходить — такая там сила тяжести из-за огромной массы планет. Зато если находиться в открытом космосе, вдалеке от любых планет и астероидов, ты будешь плавать в невесомости. Вот почему космонавты в своих кораблях плавают, будто в воде — их ничего не притягивает.

Что посмотреть и почитать: сериал ВВС «Планеты», книга Принджа Р. «Планетариум».

фото: www.roscosmos.ru

Космическая эйфория

Вы все равно не захотите возвращаться назад

Некоторые астронавты сообщали о том, что во время своих космических миссий испытывали так называемое «чувство прозрения», озарения, эйфории. Например, астронавт NASA Чарльз Дьюк как-то говорил:

Наблюдая за красотой Земли с борта космического аппарата «Аполлон-14», астронавт Эдгар Митчелл сообщил о посетившем его чувстве глубокого успокоения и эйфории. Он рассказал о том, как испытывает изменение состояния его сознания и обретает понимание смысла самой Вселенной и каждого ее атома в отрыве от материи.

Юджин Сернан, еще один астронавт NASA, описал возникшее у него чувство прозрения следующим образом:

Расти Швайкарт ощущал, как «является частью всего и каждого в этом мире», и отмечал, что «эта метаморфоза сознания затрагивает все ваши фибры настолько, что вы превращаетесь в живой комок ощущений».

Оказавшись в таком состоянии, Швайкарт описал нашу Землю:

Возвращение домой

Борьба Леонова за жизнь была завершена; люк за его спиной захлопнулся, отделив тесный светлый уютный мирок кабины «Восхода-2» от темного бесконечного холода космического пространства. Но тут возникла другая проблема. Начало повышаться парциальное давление кислорода в кабине, оно дошло уже до 460 мм и продолжало расти, — и это при норме в 160 мм. Малейшая искра в электросхемах приборов могла привезти к взрыву. Позднее выяснилось, что из-за того, что долгое время «Восход-2» был стабилизирован относительно Солнца, он нагревался неравномерно (с одной стороны +150°С, а с другой -140°С), что привело к незначительной деформации корпуса. Датчики закрытия люка сработали, но осталась небольшая щель, из которой улетучивался воздух. Система автоматики исправно обеспечивала жизнеобеспечение космонавтов, подавая в кабину кислород. Разобраться самостоятельно с этим экипаж был не в силах, и космонавтам оставалось лишь с ужасом наблюдать за показаниями приборов. Когда общее давление достигло 920 мм, люк под его напором захлопнулся, и угроза миновала — вскоре атмосфера внутри кабины нормализовалась.

Но и на этом беды космонавтов не закончились. В штатном режиме корабль должен был начать программу посадки после 17-ого витка, но тормозная двигательная установка не сработала в автоматическом режиме, и корабль продолжал с бешеной скоростью нестись по орбите. Сажать корабль пришлось в ручном режиме, Беляков сориентировал его в правильное положение и направил в безлюдную местность в тайге в районе Соликамска. Больше всего тогда командир боялся попасть в густонаселенный район и задеть линии электропередач или дома. Был также риск залететь на недружественную на тот момент территорию Китая, но всего этого удалось избежать. После включения тормозных двигателей и торможения в атмосфере потянулись мучительные секунды ожидания. Но все обошлось: парашютная система сработала в штатном режиме, и «Восход-2» приземлился в 30 километрах юго-западнее города Березники в Пермской области. Командир блестяще справился с задачей, отклонившись от расчетной точки всего на 80 км с учетом того, что корабль летел со скоростью около 30 000 км/ч.

С вертолета очень быстро обнаружили красные парашюты, повисшие на верхушках деревьев, но вот найти место для посадки и вытащить удачно приземлившийся экипаж не было никакой возможности. Двое суток Беляев и Леонов просидели в заснеженной тайге, ожидая прибытия помощи. Не вылезая из скафандров, они закутались в теплоизоляционную обшивку, обмотались стропами парашютов, развели костер, но в первую ночь согреться не удалось. Наутро им сбросили продукты и теплые вещи (пилоты сняли куртки со своих плеч), на канатах спустили группу с врачом, которая, добравшись до приземлившихся космонавтов, смогла обеспечить им лучшие условия. Все это время неподалеку вырубали площадку для приземления эвакуационного вертолета, куда космонавты могли добраться на лыжах. Уже 21 марта Беляев и Леонов были в Перми, откуда доложили об удачном завершении полета лично генсеку КПСС Леониду Брежневу, а 23 марта героев встречала Москва.

Формирование туманности

Туманность появляется, когда частички ISM подвергаются гравитационному коллапсу. Из-за обоюдного гравитационного влияния материя сближается и создает участки с большей плотностью. В центре могут формироваться звезды, чье ультрафиолетовое ионизирующее излучение делает так, что окружающий газ приобретает видимость на оптических длинах волн.

Большинство туманностей крупные, а их диаметр достигает сотни световых лет. Они плотнее окружающего пространства, но уступают вакууму, созданному в земной среде. Если бы существовала туманность, похожая на Землю, то ее масса достигала бы пары килограмм.

Обозначения ярких звезд в созвездиях

Астрономы давно поняли, что при детальном изучении звездного неба одними лишь именами обойтись не удастся — звезд слишком много!

Система Байера

В 1603 году немецкий астроном Иоганн Байер издал звездный атлас «Уранометрия», в котором впервые звезды обозначались буквами греческого алфавита в порядке убывания блеска. Самая яркая звезда в созвездии обозначалась буквой α (альфа), вторая по яркости — β (бета), третья — γ (гамма) и так далее, вплоть до омеги. Если в созвездии было много звезд и 24 букв алфавита не хватало, Байер использовал латинский алфавит: сначала строчные буквы, а затем и заглавные (последние только до буквы Q).

В атласе Байера ярчайшая звезда ночного неба, Сириус, стала обозначаться как α Большого Пса, а звезда Арктур как α Волопаса.

Эта система прижилась в астрономии и широко используется по сей день. Правда, принцип убывания яркости не всегда соблюдается. Например, звезды ковша Большой Медведицы обозначены не по яркости, а просто справа налево: крайняя звезда ковша — α Большая Медведицы, а крайняя звезда ручки ковша — η Большой Медведицы. Бывает и так, что самая яркая звезда в созвездии не альфа, а бета или гамма. Нередко это связано с тем, что во времена Байера яркость звезд определялась очень неточно, на глаз.

Как обозначаются звезды в созвездиях: Система Флемстида

В XVII веке английский астроном Флемстид предложил обозначать звезды в созвездиях просто цифрами. При этом порядок присвоения цифр звездам созвездия зависел не от их яркости, а от порядка пересечения ими небесного меридиана. (То есть в конечном счете от координат звезды.)

В этой системе Сириус стал обозначаться как 9 Большого Пса. Это значит, что Сириус — девятая по очередности звезда из созвездия Большого Пса, которая пересечет небесный меридиан на юге.

Сегодня на картах звездного неба самые яркие звезды в созвездиях обозначены греческими буквами по системе Байера, а более тусклые обозначены цифрами по системе Флемстида. Латинские буквы Байера для обозначения звезд используются редко, зато на карты часто наносят имена самых ярких звезд.

Успешная высадка на Марс

Одновременно с венерианской программой, Советы разрабатывали комплексную программу по достижению и исследованию Марса.

Первым достижением в ней стал выход на орбиту четвёртой планеты Солнечной системы аппаратов-близнецов «Марс-2» и «Марс-3», запущенных почти одновременно в мае 1971 года.

Оба космических аппарата были предназначены для орбитального картографирования и кроме того, несли спускаемые посадочные модули.

Посадочный модуль «Марс-2» разбился, «Марс-3» успешно приземлился и начал передачу данных. К сожалению, пылевая буря на поверхности прекратила передачу спустя 20 секунд.

Это не помешало получить подробные снимки поверхности планеты с орбиты и стать им первыми аппаратами, достигшими Красной планеты.

Паранальская обсерватория

Фото: European Southern Observatory

Паранальскую обсерваторию открыли в 1999 году в Чили. Она входит в комплекс Европейской Южной обсерватории (ESO) — одной из старейших организаций по астрономическим исследованиям.

Вот тут можно посмотреть на обсерваторию по годам:

Обсерватория находится в Атакамской пустыне на высоте 2 635 м над уровнем моря, что эквивалентно высоте восьми Эйфелевых башен. Она оснащена несколькими телескопами, в число которых входит и один из самых мощных оптических инструментов наблюдения за космосом — Very Large Telescope. Он состоит из четырех телескопов с зеркалами диаметром 8,2 м и четырех подвижных вспомогательных телескопов диаметром 1,8 м. Все вместе они создают интерферометр, разделяющий пучки электромагнитного светового излучения. С помощью телескопа за один час наблюдений можно получить изображения небесных объектов в 30 звездных величин, что соответствует видимости объектов в 4 млрд раз тусклее, чем может увидеть человеческий глаз.

Видео телескопа

Этот телескоп уже внес огромный вклад в изучение космического пространства. С помощью него удалось получить первые изображения экзопланет, отследить движение звезд вокруг черной дыры и в 2005 году увидеть послесвечения самого дальнего из известных гамма-всплесков.

На территории обсерватории также есть резиденция для астрономов, работающих на станции. Внутри расположены огромный сад с бассейном, спортзал и ресторан. Там даже проходили съемки одного из фильмов про Джеймса Бонда — «Квант милосердия».

На сайте Европейской Южной обсерватории можно отправиться в виртуальное путешествие по территории с огромными телескопами.

Средства безопасности в космосе

О средствах против буйных космических туристов было рассказано в научном издании Futurism. В ходе подкаста «How It Happened» Мириам Крамер рассказала, что члены космических кораблей всегда должны быть готовы к худшему течению обстоятельств. В некоторых случаях один или несколько астронавтов могут стать опасными для себя или окружающих. По ее словам, для их усмирения на борту всегда есть застежки-молнии успокоительные средства.

С собой астронавты всегда берут вещи для связывания и успокаивания буйных коллег

По данным The Associated Press, аэрокосмическое агентство NASA задумалась о способах усмирения буйных астронавтов в 2001 году. Перед полетом члены каждой миссии проходят инструктаж, где говорится о том, что в случае опасности они в праве перевязать запястья и лодыжки буйных коллег изолентой и уколоть транквилизатором. Также в инструкции говорится, что во время перевязки нужно разговаривать с коллегой и объяснить, что все эти меры необходимы для его же безопасности.

Медицинский и психологический осмотр прошли и члены экипажа Inspiration4

Звучит ужасно, но на самом деле вероятность такого происшествия очень мала. Перед полетами астронавты NASA проходят тщательный медицинский осмотр — помимо физического состояния, медики также проверяют их психическое здоровье. Такой же осмотр недавно прошли члены экипажа гражданской миссии Inspiration4, которая была организована компанией SpaceX. Каковы были результаты их тестирования неизвестно, но в ходе полета явно не произошло ничего плохого. По словам Криса Семброски, который является одним из участников миссии, это очень хорошо, что у них есть снаряжение для успокаивания коллег. Но вероятность нервного срыва и паники на борту составляет менее 1%.

[править] Регионы

Космос — это частичный вакуум: его различные области определяются различными атмосферами и «ветрами», которые доминируют в них, и простираются до точки, в которой эти ветры уступают место другим. Геопространство простирается от атмосферы Земли до внешних границ магнитного поля Земли, после чего уступает место солнечному ветру межпланетного пространства. Межпланетное пространство простирается до гелиопаузы, после чего солнечный ветер уступает место ветрам межзвездной среды. Затем межзвездное пространство продолжается до краев галактики, где исчезает в межгалактической пустоте.

Геокосмическое пространство

Геокосмическое пространство — это область космического пространства около Земли, включая верхнюю атмосферу и магнитосферу. Радиационные пояса Ван Аллена лежат внутри геопространства. Внешняя граница геопространства — это магнитопауза, которая образует границу между магнитосферой Земли и солнечным ветром. Внутренняя граница — ионосфера. Изменчивые космические погодные условия в геопространстве зависят от поведения Солнца и солнечного ветра; тема геокосмического пространства неразрывно связана с гелиофизикой — изучением Солнца и его влияния на планеты Солнечной системы.

Межпланетное пространство

Межпланетное пространство определяется солнечным ветром, непрерывным потоком заряженных частиц, исходящих от Солнца, который создает очень тонкую атмосферу (гелиосферу) на миллиарды километров в космос. Этот ветер имеет плотность частиц 5-10 протонов/см³ и движется со скоростью 350—400 км/с (780 000—890 000 миль в час). Межпланетное пространство простирается до гелиопаузы, где влияние галактического окружения начинает преобладать над магнитным полем и потоком частиц от Солнца. Расстояние и сила гелиопаузы варьируются в зависимости от уровня активности солнечного ветра. Гелиопауза, в свою очередь, отклоняет галактические космические лучи с низкой энергией, причем этот эффект модуляции достигает максимума во время солнечного максимума.

Межзвездное пространство

Межзвездное пространство — это физическое пространство внутри галактики, за пределами влияния каждой звезды на окружающую плазму. Содержимое межзвездного пространства называется межзвездной средой. Примерно 70 % массы межзвездной среды состоит из неподеленных атомов водорода; большая часть остатка состоит из атомов гелия. Он обогащен следами более тяжелых атомов, образованных в результате звездного нуклеосинтеза. Эти атомы выбрасываются в межзвездную среду звездными ветрами или когда эволюционирующие звезды начинают сбрасывать свои внешние оболочки, например, во время образования планетарной туманности. Катаклизмический взрыв сверхновой звезды генерирует расширяющуюся ударную волну, состоящую из выброшенных материалов, которые еще больше обогащают среду. Плотность вещества в межзвездной среде может значительно варьироваться: в среднем составляет около 106 частиц на м³, но в холодных молекулярных облаках может содержаться 108—1012 частиц на м³.

Межгалактическое пространство

Межгалактическое пространство — это физическое пространство между галактиками. Исследования крупномасштабного распределения галактик показывают, что Вселенная имеет структуру, напоминающую пену, с группами и скоплениями галактик, расположенными вдоль волокон, которые занимают примерно десятую часть всего пространства. Остальная часть образует огромные пустоты, которые в основном пусты от галактик. Обычно пустота охватывает расстояние (10-40) h−1 Мпк, где h — постоянная Хаббла в единицах 100 км/с Мпк−1, или безразмерная постоянная Хаббла.

Полеты на Луну и около нее

Space Adventures предлагают и окололунный полет. В нем будут использованы проверенные в полете российские космические аппараты. Запланировано участие двух частных лиц и одного профессионального космонавта для полета по свободной траектории вокруг обратной стороны Луны. Они окажутся в нескольких сотнях километров от ее поверхности. Любой турист, который решит присоединиться к окололунной миссии, увидит освещенную дальнюю сторону спутника, а затем станет свидетелем восхода Земли, поднимающейся над поверхностью Луны.

До конца 2021 года Space Adventures планируют отправить на МКС двух туристов на российском корабле «Союз МС». В 2023 году Space Adventures и РКК «Энергия» также отправят на МКС двух космонавтов. В ходе экспедиции один из участников космического полета совместно с профессиональным российским космонавтом совершит выход в открытый космос, следует из пресс-релиза «Роскосмоса». Планируется, что космический турист выйдет в открытый космос на 90–100 минут, что соответствует одному витку вокруг Земли.

Обучение такому космическому полету будет длиться несколько недель в Центре подготовки космонавтов им. Ю.А. Гагарина в Звездном городке. Подготовка к выходу в открытый космос предполагает ознакомление с работой скафандра «Орлан» и с тем, как проводится выход в открытый космос. Лучшее место для моделирования открытого космоса — подводная среда, поэтому большая часть обучения будет проходить в плавучем комплексе Звездного городка, куда погружен макет модулей МКС в полную величину. Каждый шаг процесса выхода и входа на космическую станцию в скафандре «Орлан» тщательно репетируется. Пребывание в космосе продлится примерно две недели, чтобы дать время для подготовки и выхода в открытый космос.

Скафандр «Орлан»

(Фото: International Space Station Imagery)

В 2023 полет вокруг Луны планирует совершить и миллардер Юсаку Маэдзава. Ранее бизнесмен выкупил все места на корабле SpaceX Starship для первого полета вокруг Луны и пригласил всех желающих подать заявку на отбор у себя в Twitter. Цель проекта dearMoon— позволить нескольким талантливым людям совершить полет вокруг Луны бесплатно, что, по задумке Миэдзава, должно вдохновить их на создание новых произведений искусства.

Помимо Space Adventures, планы по освоению рынка космического туризма есть у компаний Virgin Galactic (принадлежит Ричарду Брэнсону) и Blue Origin (принадлежит Джеффу Безосу). В 2019 году NASA выбрало Blue Origin и еще десять других компаний для производства прототипов космических аппаратов для высадки на Луну.

Крымская астрофизическая обсерватория

Обсерваторию построили в 1945 году внутри научного городка с говорящим названием — Научный, в часе езды от Симферополя. В ее честь назван один из астероидов главного пояса — КрАО. Основная часть обсерватории находится на южном склоне горы Сель-Бухра, что блокирует посторонний свет, защищает от лишней пыли и обеспечивает все условия для качественного наблюдения за небом. Всего у обсерватории 17 действующих телескопов, часть из которых раскиданы по территории Научного и могут прятаться даже среди лесов.

В Крымской обсерватории проводят экскурсии, но только по предварительной договоренности. Экскурсии проходят поздно вечером, когда открывается чистый вид на звездное небо. При желании гости могут остаться ночевать на территории Научного: в городке есть развитая инфраструктура с кафе, парками и гостиницами.

Крымская обсерватория

(Фото: krym-portal.ru)

Чем отличается космос от Вселенной

Понятие «космос» вмещает в себя все, что находится за пределами земной оболочки. Это невообразимое, буквально бескрайнее пространство, в нем присутствуют разнообразные космические тела, существующие во множестве видов – это планеты, кометы, «черные дыры», астероиды, метеориты, множество других тел. Космос можно разделить на ближний, активно изучаемый людьми на протяжении существования человечества (для этого используется специальная техника), и дальний – доступ для его изучения пока непреодолим.

Если говорить о Вселенной, то об этом термине можно толковать с разных точек зрения. В философской интерпретации – это мироздание, бытие, и человек – неотъемлемая часть этого мироздания.

Имеется еще понятие «астрономическая Вселенная». Вселенная в астрономии – это часть мира, ее можно познавать, используя современные методы и средства – начиная от планеты Земля до доступного межзвездного пространства. Причем сведений о бесконечности этого пространства просто нет — какая Вселенная на самом деле – неизвестно.

Если задаться вопросом: что больше — космос или Вселенная, то вопрос останется без четкого ответа, как и вопрос о разнице между Вселенной и космосом. Имеется конкретное мнение, что начало мира – это космос (размер космоса не поддается исчислению), а видимая Вселенная появилась вследствие произошедшего взрыва. Существует также не менее авторитетное мнение — вся Вселенная – единое целое, а космос – только ее часть.

Пояс астероидов сложно преодолеть на космическом корабле

Еще один миф, который отображен в голливудских фильмах. В “Звездный войнах” и некоторых других картинах показано, что пролететь сквозь пояс астероидов под силу лишь самым ловким пилотам космического корабля. Ведь необходимо уворачиваться от глыб, показывая при этом фигуры высшего пилотажа.

На самом же деле плотность астероидов не такая высокая, как показано в фильмах. Учитывая космические расстояния, наткнуться на препятствие будет не так-то просто, учитывая, что электроника, которой оснащаются космические корабли, предупреждают о препятствии заранее на большом расстоянии.

Стоит ли тратить такие деньги на полеты в космос?

Хороший вопрос. К сожалению, космические агентства не всегда как следует информируют общественность о своих достижениях, а ведь от полетов в космос выиграли очень многие индустрии.

Ученые разрабатывают новые системы жизнедеятельности. Бортовые компьютеры стали предвестниками микрочипов, которые сегодня есть в каждом смартфоне. Пожарные получили униформу с большей степенью огнеупорности. Отслеживание состояния здоровья космонавтов привело к популярности подобных систем и на Земле. Исследование возбудителей различных заболеваний в состоянии невесомости помогает ученым находить новые способы лечения.

Освоение орбиты и поверхности Луны

К высадке человека на Луну русские ученые готовились не меньше, чем их американские коллеги, несмотря на трудности с ракетоносителями и электронными системами.

Именно им удалась первая мягкая посадка на внеземное тело, которую 3 февраля 1966 года выполнил аппарат «Луна-9». Уже 3 апреля 1966 года на орбиту вышел искусственный спутник Луны «Луна-10».

Фактическим завершением рекордных «завоеваний» желанного спутника стала высадка первого в истории планетохода «Луноход-1», приступившего к работе 17 ноября 1970 года.

Он проработал на Луне одиннадцать лунных дней (10,5 земных месяцев) до 14 сентября 1971 года, проехав за это время 10 540 метров.

«Луноход-1» передал на Землю 211 лунных панорам, 25 тысяч фотографий, позволил определить с помощью лазера точное расстояние до спутника и проанализировал 25 проб грунта.

[править] Формирование и состояние

Размер всей вселенной неизвестен и может быть бесконечным. Согласно теории Большого взрыва, очень ранняя Вселенная была чрезвычайно горячим и плотным состоянием около 13,8 миллиарда лет назад, которое быстро расширялось. Приблизительно 380 000 лет спустя Вселенная остыла достаточно, чтобы позволить протонам и электронам объединиться и образовать водород — так называемая эпоха рекомбинации. Когда это произошло, материя и энергия разъединились, позволив фотонам свободно перемещаться через постоянно расширяющееся пространство. Материя, оставшаяся после первоначального расширения, с тех пор подверглась гравитационному коллапсу с образованием звезд, галактик и других астрономических объектов, оставив после себя глубокий вакуум, который образует то, что сейчас называется космическим пространством. Поскольку свет имеет конечную скорость, эта теория также ограничивает размер непосредственно наблюдаемой Вселенной.

Современная форма Вселенной была определена на основе измерений космического микроволнового фона с помощью таких спутников, как зонд Уилкинсона для микроволновой анизотропии. Эти наблюдения показывают, что пространственная геометрия наблюдаемой Вселенной является «плоской», а это означает, что фотоны, идущие по параллельным путям в одной точке, остаются параллельными, когда они проходят через пространство до предела наблюдаемой Вселенной, за исключением локальной гравитации. Плоская Вселенная в сочетании с измеренной плотностью массы Вселенной и ускоряющимся расширением Вселенной указывает на то, что в космосе имеется ненулевая энергия вакуума, которая называется темной энергией.

По оценкам, средняя плотность энергии современной Вселенной составляет 5,9 протонов на кубический метр, включая темную энергию, темную материю и барионную материю (обычное вещество, состоящее из атомов). На атомы приходится только 4,6 % общей плотности энергии, или плотность одного протона на четыре кубических метра. Плотность Вселенной явно неоднородна; она варьируется от относительно высокой плотности в галактиках, включая очень высокую плотность в структурах внутри галактик, таких как планеты, звезды и черные дыры, до условий в огромных пустотах, которые имеют гораздо более низкую плотность, по крайней мере, с точки зрения видимого вещества. В отличие от материи и темной материи, темная энергия, похоже, не сконцентрирована в галактиках: хотя темная энергия может составлять большую часть массы-энергии во Вселенной, влияние темной энергии на 5 порядков меньше, чем влияние гравитации материи и темной материи в пределах Млечного Пути.

Космические объекты

Космос до сих пор полностью не открыл своих тайн человечеству. Так например, сравнительно недавно были открыт такие объекты, как квазары. Это очень мощные источники радиоизлучения. Ученым доподлинно еще не известно что они собой представляют. Но предположительно это ядра развивающихся молодых галактик, в середине которых, благодаря колоссальной гравитации сверхмассивной черной дыры формируется аккреационный диск поистине невообразимых размеров, являющийся источником излучения, превышающим мощность даже такой галактики, как наша.

Нейтронные звезды — космическое тело, которое состоит почти только из нейтронной материи, покрытой довольно тонкой корой вещества электронов и атомных ядер. По современным гипотезам, нейтронные звезды являются результатом эволюции звезды после вспышки сверхновой.

Человечество давно пытается решить вопрос возникновения окружающей нас вселенной, его причин. Науке удается раскрывать многие загадки и тайны пространства и времени, энергии и вещества. Также, в последнее время появились и экспериментальные данные, которые позволяют представить себе величественную картину эволюции Вселенной наглядным образом.

Межгалактическая звезда

Межгалактическими звездами называются светила, которые не входят в состав галактик. Первые объекты такого типа были открыты во второй половине 90-х. Считается, что они образуются за счет столкновения галактик или при сближении двойной звезды с черной дырой. В последнем случае одно из светил “выстреливается” в сторону и перемещается на большое расстояние.

Большое число звезд такого типа обнаружено в Скоплении Девы. Их количество находится в районе триллиона. Также найдено 675 светил в окрестностях Млечного Пути. Большинство из них являются красными гигантами, а состав указывает на то, что звезды образовались в центре галактики, после чего переместились на ее границу.

Интересные факты о Вселенной

Несколько интересных фактов – все о Вселенной:

  1. Если теория катастрофы космос-Вселенная, в которой существует наша Земля, верна, то тогда можно верить и версии о том, что возраст этого образования 13,7 млрд. лет. Вселенная, территория которой меняет свои границы постоянно, предположительно имеет диаметр в 150 млрд. световых лет.
  2. Имеется теория, что ранее Вселенная была более горячей, а при постоянном расширении температура постепенно снижается. По мнению ученых, в начале формирования температура была выше, чем миллиард Кельвинов (для сравнения – сегодняшний показатель – 2725 Кельвинов). А сейчас, с каждым расширением пространство теряет температуру, в результате чего Вселенной угрожает глобальный холод.
  3. При постоянном движении галактик и стремлении к отдалению они могут просто разойтись до такой степени, что произойдет взрыв, в результате которого разрушению подлежат даже атомы.
  4. Современные методы исследования (посредством длины волн электромагнитного спектра, инфракрасных, рентгеновских лучей и так далее) позволяют ученым изучать отдаленные пространства. Мощности увидеть все пока нет, но есть предположение о наличии темной материи, она, по всей вероятности, ускоряет удаление галактик.
  5. Есть шанс, что Млечный Путь может поглотить любого карликового соседа, а Андромеда может поглотить Млечный Путь.

Астрономы продолжают изучать и вселенную, и ее объекты: кометы, астероиды, метеориты, Солнечную систему. Чем более современные технологии используются в ходе исследований, тем больше удивительных фактов удается открыть.

Путешествуем по Солнечной системе

Солнце — это самая близкая к нам звезда. По форме Солнце напоминает огромный шар. Солнце такое большое и горячее, что мы видим его и ощущаем тепло. Кроме Солнца в космосе ещё есть другие удивительные звёзды, многие из которых гораздо больше. Но они находятся так далеко, что мы можем только наблюдать их в ночном небе.

Кроме звёзд в космосе есть планеты. Они не умеют светить как звёзды, а только отражают свет. Все планеты движутся вокруг звёзд и вокруг своей оси. Мы с тобой живём на планете, которая называется Земля. Рядом с Землёй есть ещё планеты, давай назовём их по порядку: Меркурий, Венера, Земля, Марс, Юпитер, Сатурн, Уран, Нептун. Всего планет 8. Каждая из них имеет свои особенности: например, самая маленькая — это Меркурий, а самая большая планета — Юпитер, у Сатурна есть множество необычных колец, а Марс окрашен в оранжево-красный цвет. Все эти планеты движутся вокруг Солнца по своему пути — орбите. Такую “семью” планет вместе с Солнцем учёные назвали Солнечной системой. 

Спутники планет. Луна

Многие планеты Солнечной системы имеют спутники. Учёные думают, что спутники — это осколки, которые образовались при формировании планеты. Спутники движутся по орбитам вокруг своих планет. Например, у самой большой планеты — Юпитера — около 63 спутников, у Марса 2 спутника, а у планеты Земля всего один — это Луна

Луну мы наблюдаем в разное время суток, в основном, ночью. Чтобы увидеть спутник Земли, нам не нужен телескоп. Но не всегда мы видим Луну одинаково: она может быть разной формы — в виде полумесяца или круга. Это происходит потому, что Луна вместе с Землёй движется вокруг Солнца и освещается им с разных сторон. 

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector