Черные дыры
Содержание:
- Странные факты о черных дырах
- Понятие и свойства чёрных дыр
- Как обнаружить черную дыру
- Возникновение, существование и исчезновение
- Теория черных дыр
- Звезды, рождающие тьму
- Что такое чёрная дыра во Вселенной и как она выглядит
- Чёрная дыра Гаргантюа
- А что с черной дырой?
- Как выглядят черные дыры
- Страх бесконечности
- Стоит ли вообще искать кротовую нору?
Странные факты о черных дырах
- Если вы упадете в черную дыру, теория уже давно предполагает, что гравитация растянет вас, как спагетти, хотя ваша смерть наступит до того, как вы достигнете сингулярности. Но в 2012 году исследование, опубликованное в журнале Nature, предположило, что квантовые эффекты заставят горизонт событий действовать во многом как стена огня, которая мгновенно сожжет вас до смерти.
- Всасывание вызвано втягиванием чего-то в вакуум, которым массивная черная дыра определенно не является. Вместо этого, объекты падают в них точно так же, как они падают на все, что оказывает гравитационное воздействие, например на Землю.
- Первым объектом, который считается черной дырой, является Лебедь X-1 . Cygnus X-1 был предметом дружеского Пари 1974 года между Стивеном Хокингом и коллегой-физиком Кипом Торном, причем Хокинг сделал ставку на то, что источник не был черной дырой. В 1990 году Хокинг признал свое поражение.
- Миниатюрные черные дыры могли образоваться сразу же после Большого Взрыва. Быстро расширяющееся пространство, возможно, сжало некоторые области в крошечные, плотные черные дыры, менее массивные, чем Солнце.
- Если звезда проходит слишком близко к черной дыре, она может быть разорвана на части.
- Астрономы подсчитали, что в Млечном Пути находится от 10 миллионов до 1 миллиарда звездных черных дыр, масса которых примерно в три раза превышает массу Солнца.
- Черные дыры остаются потрясающим кормом для научно-фантастических книг и фильмов.
Понятие и свойства чёрных дыр
Чёрные дыры обладают очень высокой плотностью и невероятно большой силой гравитации. Даже лучи света не могут вырваться из них. Именно поэтому учёные могут «увидеть» чёрную дыру только благодаря тому действию, которое она оказывает на окружающее пространство. В непосредственной близости от чёрной дыры вещество раскаляется и движется с очень большой скоростью. Это газообразное вещество называют аккреционным диском, который выглядит как плоское светящееся облако. Рентгеновское излучение аккреционного диска учёные наблюдают в рентгеновские телескопы. Также фиксируют огромную скорость движения звёзд по их орбитам, что происходит благодаря большой гравитации невидимого объекта огромной массы. Астрономы выделяют три класса чёрных дыр:
•чёрные дыры, имеющие звёздную массу,
•чёрные дыры с промежуточной массой,
•сверхмассивные чёрные дыры.
Звёздной считают массу от трех до ста солнечных масс. Сверхмассивными называют чёрные дыры, имеющие от сотен тысяч до нескольких миллиардов масс Солнца. Они находятся обычно в центре галактик.
Вторая космическая скорость или скорость убегания – это тот минимум, который необходимо достичь для преодоления гравитационного притяжения и выхода за пределы орбиты данного небесного тела. Для Земли скорость убегания равна одиннадцати километрам в секунду, а для чёрной дыры — это более трёхсот тысяч, вот насколько сильна её гравитация!
Границу чёрной дыры называют горизонтом событий. Объект, попавший внутрь него, уже не может покинуть эту область. Размер горизонта событий пропорционален массе чёрной дыры. Чтобы показать, насколько огромна плотность чёрных дыр, учёные приводят следующие цифры – чёрная дыра с массой, в 10 раз превосходящей солнечную, имела бы, примерно, 60 км в диаметре, а чёрная дыра с массой нашей Земли – всего лишь 2 см. Но это только теоретические расчеты, поскольку чёрных дыр, не достигших трёх солнечных масс, учёными ещё не выявлено. Всё, что входит в область горизонта событий, двигается по направлению к сингулярности. Сингулярность, если сказать упрощенно, — это место, где плотность стремится к бесконечности. Через гравитационную сингулярность нельзя провести входящую в неё геодезическую линию. Для чёрной дыры характерно искривление структуры пространства и времени. Прямая линия, которая в физике представляет собой путь движения света в вакууме, вблизи чёрной дыры становится кривой. Какие физические законы работают рядом с точкой сингулярности и непосредственно в ней, пока неизвестно. Некоторые исследователи, например, говорят о наличии так называемых червоточин, или пространственно-временных туннелей, в чёрных дырах. Но не все учёные согласны признать существование подобных туннелей-червоточин.
Как обнаружить черную дыру
В конце своей жизни массивные звезды могут превращаться в черные дыры. И на этапе, когда только пытались найти первые черные дыры, возник вопрос: как их можно обнаружить. Первая идея была такой: звезды, особенно массивные, нередко рождаются парами. Одна из таких звезд превращается в черную дыру, и мы перестаем ее видеть. При этом она продолжает существовать. Предполагалось, что мы сможем увидеть вращение соседней звезды вокруг этого невидимого объекта, при помощи вычислений измерить его массу и обнаружить, что в этом месте находится черная дыра.
Сергей Попов рассказывает, что исторически это был первый предложенный способ поиска. С 60-х годов ученые пытались искать их по такому методу, но ничего не обнаружили. Последние пару лет стали появляться возможные кандидаты на звание черных дыр, но ученые пока не уверены, что в паре с обычными звездами находятся именно они.
Визуализация черной дыры
(Фото: NASA)
Если опять обратиться к черной дыре, которая соседствует со звездой, то вещество с обычной звезды может перетекать в дыру. Черная дыра своей гравитацией будет засасывать это вещество. Если представить, что в нее одновременно кинули два камня, они могут столкнуться над горизонтом на скорости почти равной скорости света. При таком столкновении выделится много энергии, которую можно заметить.
Но в звездах не камни, а газ. Когда разные слои газа трутся друг о друга, они нагреваются до миллионов градусов, и это тепло можно увидеть. С помощью такого способа в конце 60-х — начале 70-х годов, когда стали запускать первые рентгеновские детекторы в космос, открыли и первые черные дыры.
Визуализация черной дыры рядом со звездой
(Фото: NASA)
В начале 60-х годов стало ясно, что есть яркие астрономические объекты — квазары. Дословно— «похожий на звезду радиоисточник». Это активные ядра галактик на начальном этапе развития, в центре которых находятся сверхмассивные черные дыры. Обнаружить их можно даже на очень отдаленных расстояниях. В ходе изучения квазаров стало ясно, что это небольшой источник, который находится в центре далекой галактики и при этом испускает много энергии. Попов рассказывает, что когда ученые открывают квазар, они уверены, что там «сидит» сверхмассивная черная дыра. Сейчас это самый массовый способ открытия черных дыр.
Визуализация квазара
(Фото: NASA)
Почти все массивные звезды превращаются в черные дыры, но не все они находятся в двойных системах, или у них нет перетекания. В таком случае дыры ищут другим способом. Сергей рассказывает, что черная дыра сильно искажает пространство-время вокруг себя, но тут важна не столько масса, сколько компактность. Понять это легко, достаточно представить острый предмет. Это предмет с очень маленькой площадью. Если просто ткнуть куда-то пальцем, нельзя проткнуть поверхность, а если с такой же силой надавить на иголку, то проткнется палец, которым на нее давят. Так вот маленькие объекты при той же массе сильнее искривляют пространство-время вокруг себя. Такой эффект называется гравитационным линзированием.
Индустрия 4.0
Как полететь на Луну: самые популярные поисковые запросы на тему космоса
Ученые наблюдают за звездой и вдруг замечают, что ее блеск растет, а потом совершенно симметрично спадает обратно. Со звездой ничего не произошло, но между нами и звездой пролетел массивный объект. И этот массивный объект, искажая пространство-время, собрал световые лучи.
Визуализация черной дыры
(Фото: NASA)
Поэтому кажется, будто возрастает светимость звезды, а на самом деле просто больше ее света было собрано и попало к нам. Звезда с массой десять масс Солнца светила бы очень заметно, ученые бы ее не пропустили. А в таких наблюдениях появляется абсолютно темный объект с массой примерно десять солнечных. Что это может быть? Только черная дыра.
Если есть пара черных дыр, то, сливаясь, они будут порождать гравитационно-волновой всплеск. И в 2015 году впервые были обнаружены такие всплески гравитационного излучения. Это последний на сегодняшний день хороший способ поиска черных дыр.
Визуализация двух черных дыр
(Фото: NASA)
Возникновение, существование и исчезновение
Возникновение
Существуют разные версии объясняющее происхождение этих необыкновенных объектов вселенной. Но однозначного ответа нет. Вселенная полна тайн, причём подчас парадоксальных и необъяснимых с точки зрения современной науки. Тем не менее, существуют следующие гипотезы возникновения чёрных дыр:
- гравитационный коллапс массивной звезды в окончательном периоде её существования;
- коллапс центра галактики;
- теория Большого взрыва как первопричины возникновения чёрных дыр;
- формирование квантовых чёрных дыр.
Остановимся более подробно на первом случае, как наиболее реалистичном. Запас топлива любой звезды имеет ограниченный природой предел. Не составляет исключение и наше Солнце. И как только этот запас начинает заканчиваться, звезда «гаснет». Время существования звезды исчисляется миллиардами лет, рано или поздно звезда «угасает» превращаясь при этом, в зависимости от размера, в белого карлика, нейтронную звезду или чёрную дыру. Чёрной дырой становятся самые крупные, массивные звёзды, обладающие гигантскими размерами. Звезда массой равной примерно десяти нашим Солнцам вполне может стать чёрной дырой по окончании своего жизненного цикла.
Но всё это объясняет лишь возникновение малых и средних чёрных дыр. Откуда же берутся гигантские чёрные дыры? Объяснение можно найти во второй и третьей гипотезе.
Откровенно говоря, процесс появления черных дыр до конца ещё не изучен. К тому же он очень сложный и может длиться миллиарды лет. Есть возможность приблизиться к истине, изучая физику промежуточных чёрных дыр. Это те самые звезды, пребывающие в процессе угасания.
Существование
В галактике Млечного пути сотни миллионов чёрных дыр. Столько же в галактике Андромеда. А до неё – 2,5 миллиона световых лет. В нашей галактике находится невероятно массивная чёрная дыра, вокруг которой вращаются всё звёзды Млечного пути. Сила гравитации чёрной дыры такова, что притягивает и не выпускает даже луч света. Но заметить саму огромную «красавицу» в телескоп достаточно сложно. Она сама свет не излучает. Возможность увидеть чёрную дыру появляется только в момент поглощения другой звезды по характерному в данном случае излучению.
Чёрные дыры обладают настолько сильными гравитационными полями, что способны искажать пространство и даже время! Материальный объект будет разорван на атомы, оказавшись внутри чёрной дыры. Во время прохождения горизонта событий вещество разгоняется до скорости света. Допустим, что космический корабль приблизился к чёрной дыре. Включив двигатель, он пытается сопротивляться силе её гравитации. Участь корабля будет незавидной. Чем сильнее он будет пытаться освободиться, тем быстрее упадёт в неё. Объяснением этому парадоксальному явлению будет вихревое гравитационное поле.
Большая чёрная дыра пребывает в центре галактики NGC 1277, на расстоянии в 228 миллионов световых лет от Земли. Не так давно обнаружены ещё большие дыры в галактиках: NGC 3842 – созвездие Льва, расстояние – 320 миллионов световых лет; NGC 4849 – скопление Кома, расстояние – 335 миллионов световых лет. Обе громадины имеют массу равную 10 миллиардам солнечных масс! Аппетит этих гигантов таков, что проглотить им нашу солнечную систему ничего не стоит.
Другая крайность самая маленькая, карликовая чёрная дыра. Крошка всего-то в три раза массивнее нашего Солнца. И это минимум массы для возникновения чёрной дыры.
Обладают чёрные дыры и ещё одним свойством – способностью поглощать своих подруг – другие чёрные дыры! Правда, взамен они могут порождать новые Вселенные! В некоторых двойных звёздных системах одна из звёзд — чёрная дыра.
Исчезновение
Открытие, сделанное английским учёным Стивеном Хокингом свидетельствует, что с течением времени, когда поглощать станет нечего, чёрная дыра начнёт испарять накопленное вещество вплоть до полного своего исчезновения.
Теория черных дыр
Черные дыры — чрезвычайно массивные объекты, но охватывают сравнительно скромный объем пространства. Кроме того, обладают огромной гравитацией, не позволяя объектам (и даже свету) покинуть их территорию. Однако, напрямую увидеть их невозможно. Исследователям приходится обращаться к излучению, появляющемуся, когда черная дыра питается.
Черные дыры в сливающихся галактиках
Интересно, но бывает так, что вещество, направляющееся к черной дыре, отскакивает от горизонта событий и выбрасывается наружу. При этом формируются яркие струи материала, передвигающиеся на релятивистских скоростях. Эти выбросы можно зафиксировать на больших дистанциях.
Черные дыры – удивительные объекты, в которых сила тяжести настолько огромна, что может сгибать свет, деформировать пространство и искажать время.
В черных дырах можно выделить три слоя: внешний и внутренний горизонт событий и сингулярность.
Горизонт событий черной дыры – граница, где у света пропадают все шансы на бегство. Как только частичка переходит этот рубеж, она не сможет уйти. Внутренняя область, где находится масса черной дыры, называется сингулярностью.
Черная дыра Млечного Пути может являться источником высокоэнергетических нейтрино
Если мы говорим с позиции классической механики, то ничто не может покинуть черную дыру. Но квантовая вносит свою поправку. Дело в том, что у каждой частицы есть античастица. Они обладают одинаковыми массами, но разным зарядом. Если пересеклись, то могут аннигилировать друг друга.
Когда такая пара возникает за пределами горизонта событий, то одна из них может втянуться, а вторая оттолкнется. Из-за этого горизонт способен уменьшиться, а черная дыра разрушиться. Ученые все еще пытаются изучить этот механизм.
Наиболее известные черные дыры
Звезды, рождающие тьму
После того, как уравнения Эйнштейна были разобраны по полочкам, настало время с помощью сделанных выводов разбираться в устройстве Вселенной. В частности, в теории эволюции звезд. Ни для кого не секрет, что в нашем мире ничто не вечно. Даже звезды имеют свой цикл жизни, пусть и более долгий, нежели человек.
Одним из первых ученых, которые всерьез заинтересовались звездной эволюцией, стал молодой астрофизик Субраманьян Чандрасекар – уроженец Индии. В 1930 году он выпустил научную работу, в которой описывалось предполагаемое внутреннее строение звезд, а также циклы их жизни.
• Уже в начале 20 века ученые догадывались о таком явлении, как гравитационное сжатие (гравитационный коллапс). В определенный момент своей жизни звезда начинает сжиматься с огромной скоростью под действием гравитационных сил. Как правило, это происходит в момент смерти звезды, однако при гравитационном коллапсе есть несколько путей дальнейшего существования раскаленного шара.
Научный руководитель Чандрасекара Ральф Фаулер – уважаемый в свое время физик-теоретик – предполагал, что во время гравитационного коллапса любая звезда превращается в более мелкую и горячую – белого карлика. Но вышло так, что ученик «сломал» теорию учителя, которую разделяло большинство физиков начала прошлого века. Согласно работе молодого индуса, кончина звезды зависит от ее изначальной массы. Например, белыми карликами могут становиться только те звезды, чья масса не превышала 1.44 от массы Солнца. Это число было названо пределом Чандрасекара. Если же масса звезды превышала этот предел, то она умирает совсем иначе. При определенных условиях, такая звезда в момент смерти может возродиться в новую, нейтронную звезду – еще одну загадку современной Вселенной. Теория относительности же подсказывает нам еще один вариант – сжатие звезды до сверхмалых величин, и вот здесь начинается самое интересное.
В 1932 году в одном из научных журналов появляется статья, в которой гениальный физик из СССР Лев Ландау предположил, что при коллапсе сверхмассивная звезда сжимается в точку с бесконечно малым радиусом и бесконечной массой. Несмотря на то, что такое событие весьма сложно представить с точки зрения неподготовленного человека, Ландау был недалек от истины. Также физик предположил, что согласно теории относительности, гравитация в такой точке будет столь велика, что начнет искажать пространство-время.
Теория Ландау понравилась астрофизикам, и они продолжили ее развивать. В 1939 году в Америке благодаря усилиям двух физиков – Роберта Оппенгеймера и Хартленда Снейдера – появилась теория, подробно описывающая сверхмассивную звезду на момент коллапса. В результате такого события должна была появиться настоящая черная дыра. Несмотря на убедительность доводов, ученые продолжали отрицать возможность существования подобных тел, как и превращение в них звезд. Даже Эйнштейн отстранился от этой идеи, посчитав, что звезда не способна на такие феноменальные превращения. Другие же физики не скупились в высказываниях, называя возможность таких событий нелепыми.
Впрочем, наука всегда достигает истины, стоит лишь немного подождать. Так и получилось.
Что такое чёрная дыра во Вселенной и как она выглядит
Определение сводится к одной точке в пространстве, гравитационное возмущение которой настолько сильное, что способно поглотить свет.
Почему? Размер материального пространства очень маленький. Подобное явление может быть вызвано смертью звезды.
Стоит отметить: дыру нельзя считать материальной единицей – это объект, где происходит искажение временного течения и трех общепринятых измерений.
Привычные геометрические формулы в этой точке не действуют.
Существует три известные модели дыр. Назовем их виды:
- Сверхмалые черные дыры размер этих аномалий сопоставим с атомом, но их масса с небольшую гору.
- «Звездные» пространственные разрывы среднего размера с массой, двадцатикратно превышающей Солнце. Одна из таких находится в «Млечном пути».
- Самые крупные, со средней массой в миллион Солнц.
Чёрная дыра Гаргантюа
Тема космических путешествий, пространственно-временных туннелей служит источником вдохновения для писателей-фантастов, сценаристов и режиссеров. В 2014 году состоялась премьера фильма «Интерстеллар». Над его созданием работала целая группа учёных. Их руководителем стал известный учёный, специалист в области теории гравитации, астрофизики – Кип Стивен Торн. Этот фильм считают одним из самых научных среди фантастических кинокартин и, соответственно, предъявляют к нему высокие требования. Велись многочисленные споры о том, насколько различные моменты фильма соответствуют научным фактам. Была даже издана книга «Наука Интерстеллара», в которой профессор Стивен Торн объясняет с научной точки зрения различные эпизоды из фильма. Он говорил о том, что многое в киноленте основано как на научных фактах, так и на научных предположениях. Однако есть и просто художественный вымысел. Например, чёрная дыра Гаргантюа представлена в виде светящегося диска, который огибает свет. Это не расходится с научными знаниями, т.к. видна не сама чёрная дыра, а только аккреционный диск, а свет не может двигаться по прямой из-за мощной гравитации и искривления пространства.
В чёрной дыре Гаргантюа есть кротовая нора, представляющая собой червоточину или туннель, проходящий сквозь пространство и время. Наличие подобных туннелей в чёрных дырах — всего лишь научное предположение, с которым не согласны многие учёные. К художественному вымыслу относится возможность совершить путешествие по такому туннелю и вернуться назад.
Чёрная дыра Гаргантюа – это фантазия создателей «Интерстеллара», которая во многом соответствует реальным космическим объектам. Поэтому для особо яростных критиков хочется напомнить – фильм, всё же, научно-фантастический, а не научно-популярный. Он показывает красоту и величие мира, который нас окружает, напоминает о том, как много ещё нерешенных задач у человечества. А требовать от фантастического фильма точного отражения научно доказанных фактов — несколько неправомерно и наивно.
А что с черной дырой?
Кротовые норы и черные дыры — два типа объектов, которые в зависимости от характеристик могут как быть очень похожими, так и сильно отличаться.
«Кротовые норы и черные дыры являются двумя разными типами решений уравнений общей теории относительности. Отличительная особенность черной дыры — это наличие горизонта событий, из пределов которого ничего не может вырваться обратно ввиду сильного гравитационного поля. У черной дыры обязательно есть горизонт событий, но она не обязательно связывает разные области пространства-времени или разные вселенные. А атрибут кротовой норы — как раз связь таких областей, но горизонта событий в ней может и не быть. И если у кротовой норы все же есть горизонт событий, снаружи она выглядит так же, как черная дыра», — поясняет заведующий кафедрой теоретической физики Московского физико-технического института Эмиль Ахмедов.
Как выглядят черные дыры
Черные дыры имеют три «слоя»: внешний и внутренний горизонт событий, а также сингулярность.
Горизонт Событий черной дыры — это граница вокруг устья черной дыры, за которую не может проникнуть свет. Как только частица пересекает горизонт событий, она не может вырваться обратно. Гравитация постоянна по всему горизонту событий.
Внутренняя область черной дыры, где находится масса объекта, известна как его сингулярность, — это точка в пространстве и времени, где сосредоточена масса черной дыры.
Ученые не могут видеть черные дыры так, как они могут видеть звезды и другие объекты в космосе. Вместо этого астрономы должны полагаться на обнаружение излучения, которое испускают черные дыры, когда пыль и газ втягиваются внутрь. Но сверхмассивные черные дыры, лежащие в центре галактики, могут быть окутаны густой пылью и газом вокруг них, что может блокировать излучение.
Иногда, когда материя притягивается к черной дыре, она рикошетит от горизонта событий и выбрасывается наружу, вместо того чтобы быть втянутой внутрь. Создаются яркие струи, движущиеся с почти релятивистскими скоростями. Хотя черная дыра остается невидимой, эти мощные струи можно наблюдать с больших расстояний.
Изображение черной дыры на телескопе Event Horizon в M87 (выпущенном в 2019 году) было экстраординарным усилием, потребовавшим двух лет исследований даже после того, как снимки были сделаны. Это происходит потому, что совместная работа телескопов, которая охватывает многие обсерватории по всему миру, производит поразительное количество данных, которые слишком велики для передачи через интернет.
Со временем исследователи ожидают получить изображение других черных дыр и построить хранилище того, как выглядят эти объекты. Следующая цель, вероятно, Стрелец А*, который является черной дырой в центре нашей собственной галактики Млечный Путь. Стрелец A* интригует, потому что он тише, чем ожидалось, что может быть связано с магнитными полями, подавляющими его активность. Другое исследование показало, что Стрельца А* окружает холодное газовое гало, что дает беспрецедентное понимание того, как выглядит окружающая среда вокруг черной дыры.
Страх бесконечности
Из-за излишней таинственности и романтизации черных дыр, эти объекты стали настоящей страшилкой среди людей. Желтая пресса любит спекулировать на неграмотности населения, выдавая в тираж изумительные истории о том, как на нашу Землю движется огромная черная дыра, которая в считанные часы поглотит Солнечную систему, или же просто излучает волны токсичного газа в сторону нашей планеты.
Особенно популярна тема уничтожения планеты с помощью Большого Адронного Коллайдера, который был построен в Европе в 2006 году на территории Европейского совета по ядерным исследованиям (CERN). Волна паники начиналась как чья-то глупая шутка, однако нарастала как снежный ком. Кто-то пустил слух, что в ускорителе частиц коллайдера может образоваться черная дыра, которая поглотит нашу планету целиком. Конечно же, возмущенный народ начал требовать запретить эксперименты в БАК, испугавшись такого исхода событий. В Европейский суд начали поступать иски с требованием закрыть коллайдер, а ученых, создавших его, наказать по всей строгости закона.
На самом деле физики не отрицают, что при столкновении частиц в Большом Адронном Коллайдере могут возникать объекты, похожие по свойствам на черные дыры, однако их размер находится на уровне размеров элементарных частиц, а существуют такие «дыры» столь недолго, что нам даже не удается зафиксировать их возникновение.
Одним из главных специалистов, которые пытаются развеять волну невежества перед людьми, является Стивен Хокинг – знаменитый физик-теоретик, который, к тому же, считается настоящим «гуру» относительно черных дыр. Хокинг доказал, что черные дыры не всегда поглощают свет, который появляется в аккреационных дисках, и его часть рассеивается в пространство. Такое явление было названо излучением Хокинга, или испарением черной дыры. Также Хокинг установил зависимость между размером черной дыры и скоростью ее «испарения» — чем она меньше, тем меньше существует во времени. А это значит, что всем противникам Большого Адронного Коллайдера не стоит переживать: черные дыры в нем не смогут просуществовать и миллионной доли секунды.
Стоит ли вообще искать кротовую нору?
Конечно, каждому писателю-фантасту или же режиссеру фильма о космосе подвластно создать кротовую нору любых размеров и проявлений. Однако ученые, порой, под сомнение ставят не только вопрос целесообразности изучения кротовой норы, но и сам факт ее существования.
«Говоря о кротовой норе, мы имеем дело с так называемым парадоксом Энрико Ферми, который можно сформулировать в одно простое изречение: «Если бы что-то существовало, то мы бы давно это увидели». Пока что достоверных и научно доказанных фактов существования кротовых нор, к сожалению, нет. Иначе, как я люблю говорить, уже бы давно в каждой квартире налогоплательщика была бы кротовая нора», — отметил Владимир Липунов.
Однако, по мнению Эмиля Ахмедова, не все так просто и категорично. Однозначно утверждать, что кротовые норы существуют только математически и на бумаге, нельзя. По словам ученого, уравнения Эйнштейна не очень ограничительные — это значит, что у них много различных решений, и не все из них обязаны реализоваться в природе. Например, белые дыры существуют как решения уравнений гравитации, но вполне вероятно, что в природе их нет. При этом черные дыры регистрируются, и уже есть их фото. Еще один важный факт — некоторые из этих гипотетических объектов неустойчивы, т.е. живут достаточно короткое время, как поставленная на ребро монета, которая может упасть при малейшем дуновении ветра.
Космонавты опять сняли НЛО: объясняем самые известные снимки из космоса